1,237 research outputs found

    Annotated Bibliography: Anticipation

    Get PDF

    Managing contamination delay to improve Timing Speculation architectures

    Get PDF
    Timing Speculation (TS) is a widely known method for realizing better-than-worst-case systems. Aggressive clocking, realizable by TS, enable systems to operate beyond specified safe frequency limits to effectively exploit the data dependent circuit delay. However, the range of aggressive clocking for performance enhancement under TS is restricted by short paths. In this paper, we show that increasing the lengths of short paths of the circuit increases the effectiveness of TS, leading to performance improvement. Also, we propose an algorithm to efficiently add delay buffers to selected short paths while keeping down the area penalty. We present our algorithm results for ISCAS-85 suite and show that it is possible to increase the circuit contamination delay by up to 30% without affecting the propagation delay. We also explore the possibility of increasing short path delays further by relaxing the constraint on propagation delay and analyze the performance impact

    Continuously updating one’s predictions underlies successful interception

    Get PDF
    This paper reviews our understanding of the interception of moving objects. Interception is a demanding task that requires both spatial and temporal precision. The required precision must be achieved on the basis of imprecise and sometimes biased sensory information. We argue that people make precise interceptive movements by continuously adjusting their movements. Initial estimates of how the movement should progress can be quite inaccurate. As the movement evolves, the estimate of how the rest of the movement should progress gradually becomes more reliable as prediction is replaced by sensory information about the progress of the movement. The improvement is particularly important when things do not progress as anticipated. Constantly adjusting one’s estimate of how the movement should progress combines the opportunity to move in a way that one anticipates will best meet the task demands with correcting for any errors in such anticipation. The fact that the ongoing movement might have to be adjusted can be considered when determining how to move, and any systematic anticipation errors can be corrected on the basis of the outcome of earlier actions

    Using movement kinematics to understand the motor side of Autism Spectrum Disorder

    Get PDF
    openComprensione del sintomo motorio dell'autismo attraverso la cinematica del movimentoBeside core deficits in social interaction and communication, atypical motor patterns have been often reported in people with Autism Spectrum Disorder (ASD). It has been recently speculated that a part of these sensorimotor abnormalities could be better explained considering prospective motor control (i.e., the ability to plan actions toward future events or consider future task demands), which has been hypothesized to be crucial for higher mind functions (e.g., understand intentions of other people) (Trevarthen and Delafield-Butt 2013). The aim of the current dissertation was to tackle the motor ‘side’ in ASD exploring whether and how prospective motor control might be atypical in children with a diagnosis of autism, given that actions are directed into the future and their control is based on knowledge of what is going to happen next (von Hofsten and Rosander 2012). To do this, an integrative approach based on neuropsychological assessment, behavioural paradigms and machine learning modelling of the kinematics recorded with motion capture techniques was applied in typically developing children and children with ASD without accompanying intellectual impairment.openXXXI CICLO - ARCHITETTURA E DESIGN - Design navale e nauticoBECCHIO, CRISTINA (IIT)Podda, Jessic

    BCIs and mobile robots for neurological rehabilitation: practical applications of remote control. Remote control of mobile robots applied in non-invasive BCI for disabled users afflicted by motor neurons diseases

    Get PDF
    This project aims at testing the possible advantages of introducing a mobile robot as a physical input/output device in a Brain Computer Interface (BCI) system. In the proposed system, the actions triggered by the subject’s brain activity results in the motions of a physical device in the real world, and not only in a modification of a graphical interface. A goal-based system for destination detecting and the high entertainment level offered by controlling a mobile robot are hence main features for actually increase patients' life quality leve

    Gaze, visual, myoelectric, and inertial data of grasps for intelligent prosthetics

    Get PDF
    A hand amputation is a highly disabling event, having severe physical and psychological repercussions on a person’s life. Despite extensive efforts devoted to restoring the missing functionality via dexterous myoelectric hand prostheses, natural and robust control usable in everyday life is still challenging. Novel techniques have been proposed to overcome the current limitations, among them the fusion of surface electromyography with other sources of contextual information. We present a dataset to investigate the inclusion of eye tracking and first person video to provide more stable intent recognition for prosthetic control. This multimodal dataset contains surface electromyography and accelerometry of the forearm, and gaze, first person video, and inertial measurements of the head recorded from 15 transradial amputees and 30 able-bodied subjects performing grasping tasks. Besides the intended application for upper-limb prosthetics, we also foresee uses for this dataset to study eye-hand coordination in the context of psychophysics, neuroscience, and assistive robotics

    Gaze, visual, myoelectric, and inertial data of grasps for intelligent prosthetics

    Get PDF
    A hand amputation is a highly disabling event, having severe physical and psychological repercussions on a person’s life. Despite extensive efforts devoted to restoring the missing functionality via dexterous myoelectric hand prostheses, natural and robust control usable in everyday life is still challenging. Novel techniques have been proposed to overcome the current limitations, among them the fusion of surface electromyography with other sources of contextual information. We present a dataset to investigate the inclusion of eye tracking and first person video to provide more stable intent recognition for prosthetic control. This multimodal dataset contains surface electromyography and accelerometry of the forearm, and gaze, first person video, and inertial measurements of the head recorded from 15 transradial amputees and 30 able-bodied subjects performing grasping tasks. Besides the intended application for upper-limb prosthetics, we also foresee uses for this dataset to study eye-hand coordination in the context of psychophysics, neuroscience, and assistive robotics

    Aerospace Medicine and Biology. A continuing bibliography with indexes

    Get PDF
    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included
    • …
    corecore