829 research outputs found

    Predicting Hospital-Acquired Infections by Scoring System with Simple Parameters

    Get PDF
    BACKGROUND: Hospital-acquired infections (HAI) are associated with increased attributable morbidity, mortality, prolonged hospitalization, and economic costs. A simple, reliable prediction model for HAI has great clinical relevance. The objective of this study is to develop a scoring system to predict HAI that was derived from Logistic Regression (LR) and validated by Artificial Neural Networks (ANN) simultaneously. METHODOLOGY/PRINCIPAL FINDINGS: A total of 476 patients from all the 806 HAI inpatients were included for the study between 2004 and 2005. A sample of 1,376 non-HAI inpatients was randomly drawn from all the admitted patients in the same period of time as the control group. External validation of 2,500 patients was abstracted from another academic teaching center. Sixteen variables were extracted from the Electronic Health Records (EHR) and fed into ANN and LR models. With stepwise selection, the following seven variables were identified by LR models as statistically significant: Foley catheterization, central venous catheterization, arterial line, nasogastric tube, hemodialysis, stress ulcer prophylaxes and systemic glucocorticosteroids. Both ANN and LR models displayed excellent discrimination (area under the receiver operating characteristic curve [AUC]: 0.964 versus 0.969, p = 0.507) to identify infection in internal validation. During external validation, high AUC was obtained from both models (AUC: 0.850 versus 0.870, p = 0.447). The scoring system also performed extremely well in the internal (AUC: 0.965) and external (AUC: 0.871) validations. CONCLUSIONS: We developed a scoring system to predict HAI with simple parameters validated with ANN and LR models. Armed with this scoring system, infectious disease specialists can more efficiently identify patients at high risk for HAI during hospitalization. Further, using parameters either by observation of medical devices used or data obtained from EHR also provided good prediction outcome that can be utilized in different clinical settings

    Current and Future Use of Artificial Intelligence in Electrocardiography.

    Get PDF
    Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help clinicians in the following areas: (1) interpretation and detection of arrhythmias, ST-segment changes, QT prolongation, and other ECG abnormalities; (2) risk prediction integrated with or without clinical variables (to predict arrhythmias, sudden cardiac death, stroke, and other cardiovascular events); (3) monitoring ECG signals from cardiac implantable electronic devices and wearable devices in real time and alerting clinicians or patients when significant changes occur according to timing, duration, and situation; (4) signal processing, improving ECG quality and accuracy by removing noise/artifacts/interference, and extracting features not visible to the human eye (heart rate variability, beat-to-beat intervals, wavelet transforms, sample-level resolution, etc.); (5) therapy guidance, assisting in patient selection, optimizing treatments, improving symptom-to-treatment times, and cost effectiveness (earlier activation of code infarction in patients with ST-segment elevation, predicting the response to antiarrhythmic drugs or cardiac implantable devices therapies, reducing the risk of cardiac toxicity, etc.); (6) facilitating the integration of ECG data with other modalities (imaging, genomics, proteomics, biomarkers, etc.). In the future, AI is expected to play an increasingly important role in ECG diagnosis and management, as more data become available and more sophisticated algorithms are developed.Manuel Marina-Breysse has received funding from European Union’s Horizon 2020 research and innovation program under the grant agreement number 965286; Machine Learning and Artificial Intelligence for Early Detection of Stroke and Atrial Fibrillation, MAESTRIA Consortium; and EIT Health, a body of the European Union.S

    Artificial intelligence for the artificial kidney: Pointers to the future of a personalized hemodialysis therapy

    Get PDF
    Current dialysis devices are not able to react when unexpected changes occur during dialysis treatment, or to learn about experience for therapy personalization. Furthermore, great efforts are dedicated to develop miniaturized artificial kidneys to achieve a continuous and personalized dialysis therapy, in order to improve patient’s quality of life. These innovative dialysis devices will require a real-time monitoring of equipment alarms, dialysis parameters and patient-related data to ensure patient safety and to allow instantaneous changes of the dialysis prescription for assessment of their adequacy. The analysis and evaluation of the resulting large-scale data sets enters the realm of Big Data and will require real-time predictive models. These may come from the fields of Machine Learning and Computational Intelligence, both included in Artificial Intelligence, a branch of engineering involved with the creation of devices that simulate intelligent behavior. The incorporation of Artificial Intelligence should provide a fully new approach to data analysis, enabling future advances in personalized dialysis therapies. With the purpose to learn about the present and potential future impact on medicine from experts in Artificial Intelligence and Machine Learning, a scientific meeting was organized in the Hospital of Bellvitge (Barcelona, Spain). As an outcome of that meeting, the aim of this review is to investigate Artificial Intelligence experiences on dialysis, with a focus on potential barriers, challenges and prospects for future applications of these technologies.Postprint (author's final draft

    Predict, diagnose, and treat chronic kidney disease with machine learning: a systematic literature review

    Get PDF
    Objectives In this systematic review we aimed at assessing how artificial intelligence (AI), including machine learning (ML) techniques have been deployed to predict, diagnose, and treat chronic kidney disease (CKD). We systematically reviewed the available evidence on these innovative techniques to improve CKD diagnosis and patient management.Methods We included English language studies retrieved from PubMed. The review is therefore to be classified as a "rapid review ", since it includes one database only, and has language restrictions; the novelty and importance of the issue make missing relevant papers unlikely. We extracted 16 variables, including: main aim, studied population, data source, sample size, problem type (regression, classification), predictors used, and performance metrics. We followed the Preferred Reporting Items for Systematic Reviews (PRISMA) approach; all main steps were done in duplicate. The review was registered on PROSPERO.ResultsFrom a total of 648 studies initially retrieved, 68 articles met the inclusion criteria.Models, as reported by authors, performed well, but the reported metrics were not homogeneous across articles and therefore direct comparison was not feasible. The most common aim was prediction of prognosis, followed by diagnosis of CKD. Algorithm generalizability, and testing on diverse populations was rarely taken into account. Furthermore, the clinical evaluation and validation of the models/algorithms was perused; only a fraction of the included studies, 6 out of 68, were performed in a clinical context.Conclusions Machine learning is a promising tool for the prediction of risk, diagnosis, and therapy management for CKD patients. Nonetheless, future work is needed to address the interpretability, generalizability, and fairness of the models to ensure the safe application of such technologies in routine clinical practice

    Predicting technique survival in peritoneal dialysis patients: comparing artificial neural networks and logistic regression

    Get PDF
    Background. Early technique failure has been a major limitation on the wider adoption of peritoneal dialysis (PD). The objectives of this study were to use data from a large, multi-centre, prospective database, the United Kingdom Renal Registry (UKRR), in order to determine the ability of an artificial neural network (ANN) model to predict early PD technique failure and to compare its performance with a logistic regression (LR)-based approach

    Pharmacological correction of intrarenal hemodynamic disorders in acute kidney injury (part 2)

    Get PDF
    Evaluate the possibilities of individual pharmacological correction and intensive care of patients with acute kidney injury of different origin. A prospective nonrandomized study. Inclusion criteria: patients with prerenal, renal and subrenal AKI module in stage of oligoanuria and restoration of diuresis. Exclusion criteria: AKI in patients after cardiosurgery and operations on large vessels. Individual pharmacological and non-pharmacological correction (renoprotection) was performed in 250 ICU patients with prerenal (130), renal (81) and subrenal (39) AK

    Long-term mortality prediction after operations for type A ascending aortic dissection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are few long-term mortality prediction studies after acute aortic dissection (AAD) Type A and none were performed using new models such as neural networks (NN) or support vector machines (SVM) which may show a higher discriminatory potency than standard multivariable models.</p> <p>Methods</p> <p>We used 32 risk factors identified by Literature search and previously assessed in short-term outcome investigations. Models were trained (50%) and validated (50%) on 2 random samples from a consecutive 235-patient cohort. NN were run only on patients with complete data for all included variables (N = 211); SVM on the overall group. Discrimination was assessed by receiver operating characteristic area under the curve (AUC) and Gini's coefficients along with classification performance.</p> <p>Results</p> <p>There were 84 deaths (36%) occurring at 564 ± 48 days (95%CI from 470 to 658 days). Patients with complete variables had a slightly lower death rate (60 of 211, 28%). NN classified 44 of 60 (73%) dead patients and 147 of 151 (97%) long-term survivors using 5 covariates: immediate post-operative chronic renal failure, circulatory arrest time, the type of surgery on ascending aorta plus hemi-arch, extracorporeal circulation time and the presence of Marfan habitus. Global accuracies of training and validation NN were excellent with AUC respectively 0.871 and 0.870 but classification errors were high among patients who died. Training SVM, using a larger number of covariates, showed no false negative or false positive cases among 118 randomly selected patients (error = 0%, AUC 1.0) whereas validation SVM, among 117 patients, provided 5 false negative and 11 false positive cases (error = 22%, AUC 0.821, p < 0.01 versus NN results). An html file was produced to adopt and manipulate the selected parameters for practical predictive purposes.</p> <p>Conclusions</p> <p>Both NN and SVM accurately selected a few operative and immediate post-operative factors and the Marfan habitus as long-term mortality predictors in AAD Type A. Although these factors were not new per se, their combination may be used in practice to index death risk post-operatively with good accuracy.</p
    corecore