664 research outputs found

    Learning enhancement of radial basis function network with particle swarm optimization

    Get PDF
    Back propagation (BP) algorithm is the most common technique in Artificial Neural Network (ANN) learning, and this includes Radial Basis Function Network. However, major disadvantages of BP are its convergence rate is relatively slow and always being trapped at the local minima. To overcome this problem, Particle Swarm Optimization (PSO) has been implemented to enhance ANN learning to increase the performance of network in terms of convergence rate and accuracy. In Back Propagation Radial Basis Function Network (BP-RBFN), there are many elements to be considered. These include the number of input nodes, hidden nodes, output nodes, learning rate, bias, minimum error and activation/transfer functions. These elements will affect the speed of RBF Network learning. In this study, Particle Swarm Optimization (PSO) is incorporated into RBF Network to enhance the learning performance of the network. Two algorithms have been developed on error optimization for Back Propagation of Radial Basis Function Network (BP-RBFN) and Particle Swarm Optimization of Radial Basis Function Network (PSO-RBFN) to seek and generate better network performance. The results show that PSO-RBFN give promising outputs with faster convergence rate and better classifications compared to BP-RBFN

    Impact of noise on a dynamical system: prediction and uncertainties from a swarm-optimized neural network

    Get PDF
    In this study, an artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey--Glass chaotic time series in the short-term x(t+6)x(t+6). The performance prediction was evaluated and compared with another studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called {\it stochastic} hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute uncertainties of predictions for noisy Mackey--Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σN\sigma_{N}) from 0.01 to 0.1.Comment: 11 pages, 8 figure

    Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction

    Get PDF
    Cooperative coevolution decomposes a problem into subcomponents and employs evolutionary algorithms for solving them. Cooperative coevolution has been effective for evolving neural networks. Different problem decomposition methods in cooperative coevolution determine how a neural network is decomposed and encoded which affects its performance. A good problem decomposition method should provide enough diversity and also group interacting variables which are the synapses in the neural network. Neural networks have shown promising results in chaotic time series prediction. This work employs two problem decomposition methods for training Elman recurrent neural networks on chaotic time series problems. The Mackey-Glass, Lorenz and Sunspot time series are used to demonstrate the performance of the cooperative neuro-evolutionary methods. The results show improvement in performance in terms of accuracy when compared to some of the methods from literature

    Forecasting bus passenger flows by using a clustering-based support vector regression approach

    Get PDF
    As a significant component of the intelligent transportation system, forecasting bus passenger flows plays a key role in resource allocation, network planning, and frequency setting. However, it remains challenging to recognize high fluctuations, nonlinearity, and periodicity of bus passenger flows due to varied destinations and departure times. For this reason, a novel forecasting model named as affinity propagation-based support vector regression (AP-SVR) is proposed based on clustering and nonlinear simulation. For the addressed approach, a clustering algorithm is first used to generate clustering-based intervals. A support vector regression (SVR) is then exploited to forecast the passenger flow for each cluster, with the use of particle swarm optimization (PSO) for obtaining the optimized parameters. Finally, the prediction results of the SVR are rearranged by chronological order rearrangement. The proposed model is tested using real bus passenger data from a bus line over four months. Experimental results demonstrate that the proposed model performs better than other peer models in terms of absolute percentage error and mean absolute percentage error. It is recommended that the deterministic clustering technique with stable cluster results (AP) can improve the forecasting performance significantly.info:eu-repo/semantics/publishedVersio

    Electrocardiogram time series forecasting and optimization using ant colony optimization algorithm

    Get PDF
    The aim of this work is to create the time series dynamic model, which is based on non-uniform embedding in the phase-space. To solve selection of time delays problem efficiently, this paper proposes an ant colony optimization (ACO) way. Firstly, false nearest neighbor method is used for determine the embedding dimension. Secondly, ant colony optimization algorithm is used for non-uniform time delay search. To quicken search speed, roulette wheel selection algorithm distributes ants’ pheromones. Optimization fitness function is the average area of all attractors. Obtained embeddings found by this model are applied in time-series forecasting using radial basis function neural networks. The study is presented in Mackey-Glass and electrocardiogram (ECG) time series forecasting. Prediction results show that the proposed model provides precise prediction accuracy

    Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting

    Get PDF
    More accurate and precise energy demand forecasts are required when energy decisions are made in a competitive environment. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated. Examples include seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. These forecasting models have resulted in an over-reliance on the use of informal judgment and higher expenses when lacking the ability to determine data characteristics and patterns. The hybridization of optimization methods and superior evolutionary algorithms can provide important improvements via good parameter determinations in the optimization process, which is of great assistance to actions taken by energy decision-makers. This book aimed to attract researchers with an interest in the research areas described above. Specifically, it sought contributions to the development of any hybrid optimization methods (e.g., quadratic programming techniques, chaotic mapping, fuzzy inference theory, quantum computing, etc.) with advanced algorithms (e.g., genetic algorithms, ant colony optimization, particle swarm optimization algorithm, etc.) that have superior capabilities over the traditional optimization approaches to overcome some embedded drawbacks, and the application of these advanced hybrid approaches to significantly improve forecasting accuracy
    corecore