49,164 research outputs found

    The LARES mission: an opportunity to teach general relativity. Frame dragging and Lense-Thirring effect

    Get PDF
    LARES is an Italian Space Agency mission devoted to test frame-dragging, a prediction of general relativity. On February 2012 the satellite has been successfully put in orbit with the qualification flight of VEGA, the new European Space Agency launcher. Basic concepts of general relativity are becoming more and more familiar because of the part they play in science fiction movies. But frame-dragging (more formally known as the Lense-Thirring effect), is so peculiar that it is a relatively unknown effect. The idea of this paper is to start from the description of the experiment and then to push some parameters of the experiment to extreme values in order to magnify the effects of relativity. This approach will provide not only the students and general people but also professionals not strictly specialized in general relativity, with increased interest in gravitational theories

    Growth factor in f(T) gravity

    Full text link
    We derive the evolution equation of growth factor for the matter over-dense perturbation in f(T)f(T) gravity. For instance, we investigate its behavior in power law model at small redshift and compare it to the prediction of Λ\LambdaCDM and dark energy with the same equation of state in the framework of Einstein general relativity. We find that the perturbation in f(T)f(T) gravity grows slower than that in Einstein general relativity if \p f/\p T>0 due to the effectively weakened gravity.Comment: 15 pages,1 figure; v2,typos corrected; v3, discussions added, accepted by JCA

    LARES Satellite Thermal Forces and a Test of General Relativity

    Full text link
    We summarize a laser-ranged satellite test of frame-dragging, a prediction of General Relativity, and then concentrate on the estimate of thermal thrust, an important perturbation affecting the accuracy of the test. The frame dragging study analysed 3.5 years of data from the LARES satellite and a longer period of time for the two LAGEOS satellites. Using the gravity field GGM05S obtained via the Grace mission, which measures the Earth's gravitational field, the prediction of General Relativity is confirmed with a 1-σ\sigma formal error of 0.002, and a systematic error of 0.05. The result for the value of the frame dragging around the Earth is μ\mu = 0.994, compared to μ\mu = 1 predicted by General Relativity. The thermal force model assumes heat flow from the sun (visual) and from Earth (IR) to the satellite core and to the fused silica reflectors on the satellite, and reradiation into space. For a roughly current epoch (days 1460 - 1580 after launch) we calculate an average along-track drag of -0.50 pm/s2pm/s^{2}.Comment: 6 pages, multiple figures in Proceedings of Metrology for Aerospace (MetroAeroSpace), 2016 IEE

    A Test of General Relativity Using the LARES and LAGEOS Satellites and a GRACE Earth's Gravity Model

    Get PDF
    We present a test of General Relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS and LAGEOS 2 laser-ranged satellites together with the Earth's gravity field model GGM05S produced by the space geodesy mission GRACE. We measure μ=(0.994±0.002)±0.05\mu = (0.994 \pm 0.002) \pm 0.05, where μ\mu is the Earth's dragging of inertial frames normalized to its General Relativity value, 0.002 is the 1-sigma formal error and 0.05 is the estimated systematic error mainly due to the uncertainties in the Earth's gravity model GGM05S. Our result is in agreement with the prediction of General Relativity.Comment: 13 pages, 4 figures, published on EPJ

    SGRs and AXPs as massive fast rotating highly magnetized white dwarfs: the case of SGR 0418+5729

    Full text link
    We describe one of the so-called low magnetic field magnetars SGR 0418+5729, as a massive fast rotating highly magnetized white dwarf following Malheiro et. al. 2012. We give bounds for the mass, radius, moment of inertia, and magnetic field for these sources, by requesting the stability of realistic general relativistic uniformly rotating configurations. Based on these parameters, we improve the theoretical prediction of the lower limit of the spin-down rate of SGR 0418+5729. In addition, we compute the electron cyclotron frequencies corresponding to the predicted surface magnetic fields.Comment: 6 pages, 1 figure, 1 table. The Thirteenth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories - Proceedings of the MG13 Meeting on General Relativity (in 3 Volumes). Edited by Rosquist Kjell et. a

    Prediction in General Relativity

    Get PDF
    Several authors have claimed that prediction is essentially impossible in the general theory of relativity, the case being particularly strong, it is said, when one fully considers the epistemic predicament of the observer. Each of these claims rests on the support of an underdetermination argument and a particular interpretation of the concept of prediction. I argue that these underdetermination arguments fail and depend on an implausible explication of prediction in the theory. The technical results adduced in these arguments can be related to certain epistemic issues, but can only be misleadingly or mistakenly characterized as related to prediction
    corecore