9,078 research outputs found

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    A prediction model of specific productivity index using least square support vector machine method

    Get PDF
    In the design of oilfield development plans, specific productivity index plays a vital role. Especially for offshore oilfields, affected by development costs and time limits, there are shortcomings of shorter test time and fewer test sampling points. Therefore, it is very necessary to predict specific productivity index. In this study, a prediction model of the specific productivity index is established by combining the principle of least squares support vector machine (LS-SVM) with the calculation method of the specific productivity index. The model uses logging parameters, crude oil experimental parameters and the specific productivity index of a large number of test well samples as input and output items respectively, and finally predicts the specific productivity index of non-test wells. It reduces the errors caused by short training time, randomness of training results and insufficient learning. A large number of sample data from the Huanghekou Sag in Bohai Oilfield were used to verify the prediction model. Comparing the specific productivity index prediction results of LS-SVM and artificial neural networks (ANNs) with actual well data respectively, the LS-SVM model has a better fitting effect, with an error of only 3.2%, which is 12.1% lower than ANNs. This study can better reflect the impact of different factors on specific productivity index, and it has important guiding significance for the evaluation of offshore oilfield productivity.Cited as: Wu, C., Wang, S., Yuan, J., Li, C., Zhang, Q. A prediction model of specific productivity index using least square support vector machine method. Advances in Geo-Energy Research, 2020, 4(4): 460-467, doi: 10.46690/ager.2020.04.1

    Intelligent Condition Monitoring and Prognostic Methods with Applications to Dynamic Seals in the Oil & Gas Industry

    Get PDF
    The capital-intensive oil & gas industry invests billions of dollars in equipment annually and it is important to keep the equipment in top operating condition to help maintain efficient process operations and improve the rate of return by predicting failures before incidents. Digitalization has taken over the world with advances in sensor technology, wireless communication and computational capabilities, however oil & gas industry has not taken full advantage of this despite being technology centric. Dynamic seals are a vital part of reciprocating and rotary equipment such as compressor, pumps, engines, etc. and are considered most frequently failing component. Polymeric seals are increasingly complex and non-linear in behavior and have been the research of interest since 1950s. Most of the prognostic studies on seals are physics-based and requires direct estimation of different physical parameters to assess the degradation of seals, which are often difficult to obtain during operation. Another feasible approach to predict the failure is from performance related sensor data and is termed as data-driven prognostics. The offline phase of this approach is where the performance related data from the component of interest are acquired, pre-processed and artificial intelligence tools or statistical methods are used to model the degradation of a system. The developed models are then deployed online for a real-time condition monitoring. There is a lack of research on the data-driven based tools and methods for dynamic seal prognosis. The primary goal in this dissertation is to develop offline data-driven intelligent condition monitoring and prognostic methods for two types of dynamic seals used in the oil & gas industry, to avoid fatal breakdown of rotary and reciprocating equipment. Accordingly, the interest in this dissertation lies in developing models to effectively evaluate and classify the running condition of rotary seals; assess the progression of degradation from its incipient to failure and to estimate the remaining useful life (RUL) of reciprocating seals. First, a data-driven prognostic framework is developed to classify the running condition of rotary seals. An accelerated aging and testing procedure simulating rotary seal operation in oil field is developed to capture the behavior of seals through their cycle of operation until failure. The diagnostic capability of torque, leakage and vibration signal in differentiating the health states of rotary seals using experiments are compared. Since the key features that differentiate the health condition of rotary seals are unknown, an extensive feature extraction in time and frequency domain is carried out and a wrapper-based feature selection approach is used to select relevant features, with Multilayer Perceptron neural network utilized as classification technique. The proposed approach has shown that features extracted from torque and leakage lack a better discriminating power on its own, in classifying the running condition of seals throughout its service life. The classifier built using optimal set of features from torque and leakage collectively has resulted in a high classification accuracy when compared to random forest and logistic regression, even for the data collected at a different operating condition. Second, a data-driven approach to predict the degradation process of reciprocating seals based on friction force signal using a hybrid Particle Swarm Optimization - Support Vector Machine is presented. There is little to no knowledge on the feature that reflects the degradation of reciprocating seals and on the application of SVM in predicting the future running condition of polymeric components such as seals. Controlled run-to-failure experiments are designed and performed, and data collected from a dedicated experimental set-up is used to develop the proposed approach. A degradation feature with high monotonicity is used as an indicator of seal degradation. The pseudo nearest neighbor is used to determine the essential number of inputs for forecasting the future trend. The most challenging aspect of tuning parameters in SVM is framed in terms of an optimization problem aimed at minimizing the prediction error. The results indicate the effectiveness and better accuracy of the proposed approach when compared to GA-SVM and XGBoost. Finally, a deep neural network-based approach for estimating remaining useful life of reciprocating seals, using force and leakage signals is presented. Time domain and frequency domain statistical features are extracted from the measurements. An ideal prognostic feature should be well correlated with degradation time, monotonically increasing or decreasing and robust to outliers. The identified metrics namely: monotonicity, correlation and robustness are used to evaluate the goodness of extracted features. Each of the three metric carries a relative importance in the RUL estimation and a weighted linear combination of the metrics are used to rank and select the best set of prognostic features. The redundancy in the selected features is eliminated using Kelley-Gardner-Sutcliffe penalty function-based correlation-clustering algorithm to select a representative feature from each of the clusters. Finally, RUL estimation is modeled using a deep neural network model. Run-to-failure data collected from a reciprocating set-up was used to validate this approach and the findings show that the proposed approach can improve the accuracy of RUL prediction when compared to PSO-SVM and XGBoost regression. This research has important contribution and implications to rotary and reciprocating seal domain in utilizing sensors along with machine learning algorithms in assessing the health state and prognosis of seals without any direct measurements. This research has paved the way to move from a traditional fail-and-fix to predict-and-prevent approach in maintenance of seals. The findings of this research are foundational for developing an online degradation assessment platform which can remotely monitor the performance degradation of seals and provide action recommendations on maintenance decisions. This would be of great interest to customers and oil field operators to improve equipment utilization, control maintenance cost by enabling just-in-time maintenance and increase rate of return on equipment by predicting failures before incidents

    Predicting the Future

    Get PDF
    Due to the increased capabilities of microprocessors and the advent of graphics processing units (GPUs) in recent decades, the use of machine learning methodologies has become popular in many fields of science and technology. This fact, together with the availability of large amounts of information, has meant that machine learning and Big Data have an important presence in the field of Energy. This Special Issue entitled “Predicting the Future—Big Data and Machine Learning” is focused on applications of machine learning methodologies in the field of energy. Topics include but are not limited to the following: big data architectures of power supply systems, energy-saving and efficiency models, environmental effects of energy consumption, prediction of occupational health and safety outcomes in the energy industry, price forecast prediction of raw materials, and energy management of smart buildings

    Data-Driven Modeling and Prediction for Reservoir Characterization and Simulation Using Seismic and Petrophysical Data Analyses

    Get PDF
    This study explores the application of data-driven modeling and prediction in reservoir characterization and simulation using seismic and petrophysical data analyses. Different aspects of the application of data-driven modeling methods are studied, which include rock facies classification, seismic attribute analyses, petrophysical properties prediction, seismic facies segmentation, and reservoir dimension reduction. The application of using petrophysical well logs to predict rock facies is explored using different data analytics methods including decision tree, random forest, support vector machine and neural network. Different models are trained from a set of well logs and pre-interpreted rock facies data. Among the compared methods, the random forest method has the best performance in classifying rock facies in the dataset. Seismic attribute values from a 3D seismic survey and petrophysical properties from well logs are collected to explore the relationships between seismic data and well logs. In this study, deep learning neural network models are created to establish the relationships. The results show that a deep learning neural network model with multi-hidden layers is capable to predict porosity values using extracted seismic attribute values. The utilization of a set of seismic attributes improves the model performance in predicting porosity values from seismic data. This study also presents a novel deep learning approach to automatically identify salt bodies directly from seismic images. A wavelet convolutional neural network (Wavelet CNN) model, which combines wavelet transformation analyses with a traditional convolutional neural network (CNN), is developed and demonstrated to increase the accuracy in predicting salt boundaries from seismic images. The Wavelet CNN model outperforms the conventional image recognition techniques, providing higher accuracy, to identify salt bodies from seismic images. Besides, this study evaluates the effect of singular value decomposition (SVD) in dimension reduction of permeability fields during reservoir modeling. Reservoir simulation results show that SVD is valid in the parameterization of the permeability field. The reconstructed permeability fields after SVD processing are good approximations of the original permeability values. This study also evaluates the application of SVD on upscaling for reservoir modeling. Different upscaling schemes are applied on the permeability field, and their performance are evaluated using reservoir simulation

    Multidimensional prognostics for rotating machinery: A review

    Get PDF
    open access articleDetermining prognosis for rotating machinery could potentially reduce maintenance costs and improve safety and avail- ability. Complex rotating machines are usually equipped with multiple sensors, which enable the development of multidi- mensional prognostic models. By considering the possible synergy among different sensor signals, multivariate models may provide more accurate prognosis than those using single-source information. Consequently, numerous research papers focusing on the theoretical considerations and practical implementations of multivariate prognostic models have been published in the last decade. However, only a limited number of review papers have been written on the subject. This article focuses on multidimensional prognostic models that have been applied to predict the failures of rotating machinery with multiple sensors. The theory and basic functioning of these techniques, their relative merits and draw- backs and how these models have been used to predict the remnant life of a machine are discussed in detail. Furthermore, this article summarizes the rotating machines to which these models have been applied and discusses future research challenges. The authors also provide seven evaluation criteria that can be used to compare the reviewed techniques. By reviewing the models reported in the literature, this article provides a guide for researchers considering prognosis options for multi-sensor rotating equipment

    Signal and data processing for machine olfaction and chemical sensing: A review

    Get PDF
    Signal and data processing are essential elements in electronic noses as well as in most chemical sensing instruments. The multivariate responses obtained by chemical sensor arrays require signal and data processing to carry out the fundamental tasks of odor identification (classification), concentration estimation (regression), and grouping of similar odors (clustering). In the last decade, important advances have shown that proper processing can improve the robustness of the instruments against diverse perturbations, namely, environmental variables, background changes, drift, etc. This article reviews the advances made in recent years in signal and data processing for machine olfaction and chemical sensing

    Application of Computational Intelligence Techniques to Process Industry Problems

    Get PDF
    In the last two decades there has been a large progress in the computational intelligence research field. The fruits of the effort spent on the research in the discussed field are powerful techniques for pattern recognition, data mining, data modelling, etc. These techniques achieve high performance on traditional data sets like the UCI machine learning database. Unfortunately, this kind of data sources usually represent clean data without any problems like data outliers, missing values, feature co-linearity, etc. common to real-life industrial data. The presence of faulty data samples can have very harmful effects on the models, for example if presented during the training of the models, it can either cause sub-optimal performance of the trained model or in the worst case destroy the so far learnt knowledge of the model. For these reasons the application of present modelling techniques to industrial problems has developed into a research field on its own. Based on the discussion of the properties and issues of the data and the state-of-the-art modelling techniques in the process industry, in this paper a novel unified approach to the development of predictive models in the process industry is presented
    corecore