21 research outputs found

    WaveletKernelNet: An Interpretable Deep Neural Network for Industrial Intelligent Diagnosis

    Full text link
    Convolutional neural network (CNN), with ability of feature learning and nonlinear mapping, has demonstrated its effectiveness in prognostics and health management (PHM). However, explanation on the physical meaning of a CNN architecture has rarely been studied. In this paper, a novel wavelet driven deep neural network termed as WaveletKernelNet (WKN) is presented, where a continuous wavelet convolutional (CWConv) layer is designed to replace the first convolutional layer of the standard CNN. This enables the first CWConv layer to discover more meaningful filters. Furthermore, only the scale parameter and translation parameter are directly learned from raw data at this CWConv layer. This provides a very effective way to obtain a customized filter bank, specifically tuned for extracting defect-related impact component embedded in the vibration signal. In addition, three experimental verification using data from laboratory environment are carried out to verify effectiveness of the proposed method for mechanical fault diagnosis. The results show the importance of the designed CWConv layer and the output of CWConv layer is interpretable. Besides, it is found that WKN has fewer parameters, higher fault classification accuracy and faster convergence speed than standard CNN

    Deep Learning Aided Data-Driven Fault Diagnosis of Rotatory Machine: A Comprehensive Review

    Get PDF
    This paper presents a comprehensive review of the developments made in rotating bearing fault diagnosis, a crucial component of a rotatory machine, during the past decade. A data-driven fault diagnosis framework consists of data acquisition, feature extraction/feature learning, and decision making based on shallow/deep learning algorithms. In this review paper, various signal processing techniques, classical machine learning approaches, and deep learning algorithms used for bearing fault diagnosis have been discussed. Moreover, highlights of the available public datasets that have been widely used in bearing fault diagnosis experiments, such as Case Western Reserve University (CWRU), Paderborn University Bearing, PRONOSTIA, and Intelligent Maintenance Systems (IMS), are discussed in this paper. A comparison of machine learning techniques, such as support vector machines, k-nearest neighbors, artificial neural networks, etc., deep learning algorithms such as a deep convolutional network (CNN), auto-encoder-based deep neural network (AE-DNN), deep belief network (DBN), deep recurrent neural network (RNN), and other deep learning methods that have been utilized for the diagnosis of rotary machines bearing fault, is presented

    Neural network-based parametric system identification: a review

    Get PDF
    Parametric system identification, which is the process of uncovering the inherent dynamics of a system based on the model built with the observed inputs and outputs data, has been intensively studied in the past few decades. Recent years have seen a surge in the use of neural networks (NNs) in system identification, owing to their high approximation capability, less reliance on prior knowledge, and the growth of computational power. However, there is a lack of review on neural network modelling in the paradigm of parametric system identification, particularly in the time domain. This article discussed the connection in principle between conventional parametric models and three types of NNs including Feedforward Neural Networks, Recurrent Neural Networks and Encoder-Decoder. Then it reviewed the advantages and limitations of related research in addressing two major challenges of parametric system identification, including the model interpretability and modelling with nonstationary realisations. Finally, new challenges and future trends in neural network-based parametric system identification are presented in this article

    Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals

    Get PDF
    Vibration measurement and monitoring are essential in a wide variety of applications. Vibration measurements are critical for diagnosing industrial machinery malfunctions because they provide information about the condition of the rotating equipment. Vibration analysis is considered the most effective method for predictive maintenance because it is used to troubleshoot instantaneous faults as well as periodic maintenance. Numerous studies conducted in this vein have been published in a variety of outlets. This review documents data-driven and recently published deep learning techniques for vibration-based condition monitoring. Numerous studies were obtained from two reputable indexing databases, Web of Science and Scopus. Following a thorough review, 59 studies were selected for synthesis. The selected studies are then systematically discussed to provide researchers with an in-depth view of deep learning-based fault diagnosis methods based on vibration signals. Additionally, a few remarks regarding future research directions are made, including graph-based neural networks, physics-informed ML, and a transformer convolutional network-based fault diagnosis method

    Clustering-guided novel unsupervised domain adversarial network for partial transfer fault diagnosis of rotating machinery

    Get PDF
    Unsupervised partial transfer fault diagnosis studies of rotating machinery have practical significance, which still exists some challenges, for example, the learned domain-specific statistics and parameters usually influence the learning effect of target-domain features to some degree, and the relatively scattered target-domain features will lead to negative transfer. To overcome those limitations and further improve partial transfer fault diagnosis performance, a clustering-guided novel unsupervised domain adversarial network is proposed in this paper. Firstly, a novel unsupervised domain adversarial network is constructed using domain-specific batch normalization to remove domain-specific information to enhance alignment between source and target domains. Secondly, embedded clustering strategy is designed to learn tightly clustered target-domain features to suppress negative transfer in partial domain adaptation process. Finally, a joint optimization objective function is defined to balance different losses to improve the training and diagnosis performance. Two experimental cases of bevel gearbox and bearing are used to validate the effectiveness and superiority of the proposed method in solving unsupervised partial transfer fault diagnosis problems

    Deep learning in food category recognition

    Get PDF
    Integrating artificial intelligence with food category recognition has been a field of interest for research for the past few decades. It is potentially one of the next steps in revolutionizing human interaction with food. The modern advent of big data and the development of data-oriented fields like deep learning have provided advancements in food category recognition. With increasing computational power and ever-larger food datasets, the approachā€™s potential has yet to be realized. This survey provides an overview of methods that can be applied to various food category recognition tasks, including detecting type, ingredients, quality, and quantity. We survey the core components for constructing a machine learning system for food category recognition, including datasets, data augmentation, hand-crafted feature extraction, and machine learning algorithms. We place a particular focus on the field of deep learning, including the utilization of convolutional neural networks, transfer learning, and semi-supervised learning. We provide an overview of relevant studies to promote further developments in food category recognition for research and industrial applicationsMRC (MC_PC_17171)Royal Society (RP202G0230)BHF (AA/18/3/34220)Hope Foundation for Cancer Research (RM60G0680)GCRF (P202PF11)Sino-UK Industrial Fund (RP202G0289)LIAS (P202ED10Data Science Enhancement Fund (P202RE237)Fight for Sight (24NN201);Sino-UK Education Fund (OP202006)BBSRC (RM32G0178B8

    Manufacturing Metrology

    Get PDF
    Metrology is the science of measurement, which can be divided into three overlapping activities: (1) the definition of units of measurement, (2) the realization of units of measurement, and (3) the traceability of measurement units. Manufacturing metrology originally implicates the measurement of components and inputs for a manufacturing process to assure they are within specification requirements. It can also be extended to indicate the performance measurement of manufacturing equipment. This Special Issue covers papers revealing novel measurement methodologies and instrumentations for manufacturing metrology from the conventional industry to the frontier of the advanced hi-tech industry. Twenty-five papers are included in this Special Issue. These published papers can be categorized into four main groups, as follows: Length measurement: covering new designs, from micro/nanogap measurement with laser triangulation sensors and laser interferometers to very-long-distance, newly developed mode-locked femtosecond lasers. Surface profile and form measurements: covering technologies with new confocal sensors and imagine sensors: in situ and on-machine measurements. Angle measurements: these include a new 2D precision level design, a review of angle measurement with mode-locked femtosecond lasers, and multi-axis machine tool squareness measurement. Other laboratory systems: these include a water cooling temperature control system and a computer-aided inspection framework for CMM performance evaluation

    Friction, Vibration and Dynamic Properties of Transmission System under Wear Progression

    Get PDF
    This reprint focuses on wear and fatigue analysis, the dynamic properties of coating surfaces in transmission systems, and non-destructive condition monitoring for the health management of transmission systems. Transmission systems play a vital role in various types of industrial structure, including wind turbines, vehicles, mining and material-handling equipment, offshore vessels, and aircrafts. Surface wear is an inevitable phenomenon during the service life of transmission systems (such as on gearboxes, bearings, and shafts), and wear propagation can reduce the durability of the contact coating surface. As a result, the performance of the transmission system can degrade significantly, which can cause sudden shutdown of the whole system and lead to unexpected economic loss and accidents. Therefore, to ensure adequate health management of the transmission system, it is necessary to investigate the friction, vibration, and dynamic properties of its contact coating surface and monitor its operating conditions

    Applied Mathematics to Mechanisms and Machines

    Get PDF
    This book brings together all 16 articles published in the Special Issue "Applied Mathematics to Mechanisms and Machines" of the MDPI Mathematics journal, in the section ā€œEngineering Mathematicsā€. The subject matter covered by these works is varied, but they all have mechanisms as the object of study and mathematics as the basis of the methodology used. In fact, the synthesis, design and optimization of mechanisms, robotics, automotives, maintenance 4.0, machine vibrations, control, biomechanics and medical devices are among the topics covered in this book. This volume may be of interest to all who work in the field of mechanism and machine science and we hope that it will contribute to the development of both mechanical engineering and applied mathematics
    corecore