3,880 research outputs found

    Inherent limitations of probabilistic models for protein-DNA binding specificity

    Get PDF
    The specificities of transcription factors are most commonly represented with probabilistic models. These models provide a probability for each base occurring at each position within the binding site and the positions are assumed to contribute independently. The model is simple and intuitive and is the basis for many motif discovery algorithms. However, the model also has inherent limitations that prevent it from accurately representing true binding probabilities, especially for the highest affinity sites under conditions of high protein concentration. The limitations are not due to the assumption of independence between positions but rather are caused by the non-linear relationship between binding affinity and binding probability and the fact that independent normalization at each position skews the site probabilities. Generally probabilistic models are reasonably good approximations, but new high-throughput methods allow for biophysical models with increased accuracy that should be used whenever possible

    Accurate prediction of gene expression by integration of DNA sequence statistics with detailed modeling of transcription regulation

    Get PDF
    Gene regulation involves a hierarchy of events that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. The effects of DNA sequence on these processes have typically been studied based either on its quantitative connection with single-domain binding free energies or on empirical rules that combine different DNA motifs to predict gene expression trends on a genomic scale. The middle-point approach that quantitatively bridges these two extremes, however, remains largely unexplored. Here, we provide an integrated approach to accurately predict gene expression from statistical sequence information in combination with detailed biophysical modeling of transcription regulation by multidomain binding on multiple DNA sites. For the regulation of the prototypical lac operon, this approach predicts within 0.3-fold accuracy transcriptional activity over a 10,000-fold range from DNA sequence statistics for different intracellular conditions.Comment: 15 pages, 5 figure

    Predicting variation of DNA shape preferences in protein-DNA interaction in cancer cells with a new biophysical model

    Full text link
    DNA shape readout is an important mechanism of target site recognition by transcription factors, in addition to the sequence readout. Several models of transcription factor-DNA binding which consider DNA shape have been developed in recent years. We present a new biophysical model of protein-DNA interaction by considering the DNA shape features, which is based on a neighbour dinucleotide dependency model BayesPI2. The parameters of the new model are restricted to a subspace spanned by the 2-mer DNA shape features, which allowing a biophysical interpretation of the new parameters as position-dependent preferences towards certain values of the features. Using the new model, we explore the variation of DNA shape preferences in several transcription factors across cancer cell lines and cellular conditions. We find evidence of DNA shape variations at FOXA1 binding sites in MCF7 cells after treatment with steroids. The new model is useful for elucidating finer details of transcription factor-DNA interaction. It may be used to improve the prediction of cancer mutation effects in the future

    Statistical-mechanical lattice models for protein-DNA binding in chromatin

    Get PDF
    Statistical-mechanical lattice models for protein-DNA binding are well established as a method to describe complex ligand binding equilibriums measured in vitro with purified DNA and protein components. Recently, a new field of applications has opened up for this approach since it has become possible to experimentally quantify genome-wide protein occupancies in relation to the DNA sequence. In particular, the organization of the eukaryotic genome by histone proteins into a nucleoprotein complex termed chromatin has been recognized as a key parameter that controls the access of transcription factors to the DNA sequence. New approaches have to be developed to derive statistical mechanical lattice descriptions of chromatin-associated protein-DNA interactions. Here, we present the theoretical framework for lattice models of histone-DNA interactions in chromatin and investigate the (competitive) DNA binding of other chromosomal proteins and transcription factors. The results have a number of applications for quantitative models for the regulation of gene expression.Comment: 19 pages, 7 figures, accepted author manuscript, to appear in J. Phys.: Cond. Mat

    A Biophysical Model for Analysis of Transcription Factor Interaction and Binding Site Arrangement from Genome-Wide Binding Data

    Get PDF
    BACKGROUND:How transcription factors (TFs) interact with cis-regulatory sequences and interact with each other is a fundamental, but not well understood, aspect of gene regulation. METHODOLOGY/PRINCIPAL FINDINGS:We present a computational method to address this question, relying on the established biophysical principles. This method, STAP (sequence to affinity prediction), takes into account all combinations and configurations of strong and weak binding sites to analyze large scale transcription factor (TF)-DNA binding data to discover cooperative interactions among TFs, infer sequence rules of interaction and predict TF target genes in new conditions with no TF-DNA binding data. The distinctions between STAP and other statistical approaches for analyzing cis-regulatory sequences include the utility of physical principles and the treatment of the DNA binding data as quantitative representation of binding strengths. Applying this method to the ChIP-seq data of 12 TFs in mouse embryonic stem (ES) cells, we found that the strength of TF-DNA binding could be significantly modulated by cooperative interactions among TFs with adjacent binding sites. However, further analysis on five putatively interacting TF pairs suggests that such interactions may be relatively insensitive to the distance and orientation of binding sites. Testing a set of putative Nanog motifs, STAP showed that a novel Nanog motif could better explain the ChIP-seq data than previously published ones. We then experimentally tested and verified the new Nanog motif. A series of comparisons showed that STAP has more predictive power than several state-of-the-art methods for cis-regulatory sequence analysis. We took advantage of this power to study the evolution of TF-target relationship in Drosophila. By learning the TF-DNA interaction models from the ChIP-chip data of D. melanogaster (Mel) and applying them to the genome of D. pseudoobscura (Pse), we found that only about half of the sequences strongly bound by TFs in Mel have high binding affinities in Pse. We show that prediction of functional TF targets from ChIP-chip data can be improved by using the conservation of STAP predicted affinities as an additional filter. CONCLUSIONS/SIGNIFICANCE:STAP is an effective method to analyze binding site arrangements, TF cooperativity, and TF target genes from genome-wide TF-DNA binding data

    A Generalized Biophysical Model of Transcription Factor Binding Specificity and Its Application on High-Throughput SELEX Data

    Get PDF
    The interaction between transcription factors (TFs) and DNA plays an important role in gene expression regulation. In the past, experiments on protein–DNA interactions could only identify a handful of sequences that a TF binds with high affinities. In recent years, several high-throughput experimental techniques, such as high-throughput SELEX (HT-SELEX), protein-binding microarrays (PBMs) and ChIP-seq, have been developed to estimate the relative binding affinities of large numbers of DNA sequences both in vitro and in vivo. The large volume of data generated by these techniques proved to be a challenge and prompted the development of novel motif discovery algorithms. These algorithms are based on a range of TF binding models, including the widely used probabilistic model that represents binding motifs as position frequency matrices (PFMs). However, the probabilistic model has limitations and the PFMs extracted from some of the high-throughput experiments are known to be suboptimal. In this dissertation, we attempt to address these important questions and develop a generalized biophysical model and an expectation maximization (EM) algorithm for estimating position weight matrices (PWMs) and other parameters using HT-SELEX data. First, we discuss the inherent limitations of the popular probabilistic model and compare it with a biophysical model that assumes the nucleotides in a binding site contribute independently to its binding energy instead of binding probability. We use simulations to demonstrate that the biophysical model almost always provides better fits to the data and conclude that it should take the place of the probabilistic model in charactering TF binding specificity. Then we describe a generalized biophysical model, which removes the assumption of known binding locations and is particularly suitable for modeling protein–DNA interactions in HT-SELEX experiments, and BEESEM, an EM algorithm capable of estimating the binding model and binding locations simultaneously. BEESEM can also calculate the confidence intervals of the estimated parameters in the binding model, a rare but useful feature among motif discovery algorithms. By comparing BEESEM with 5 other algorithms on HT-SELEX, PBM and ChIP-seq data, we demonstrate that BEESEM provides significantly better fits to in vitro data and is similar to the other methods (with one exception) on in vivo data under the criterion of the area under the receiver operating characteristic curve (AUROC). We also discuss the limitations of the AUROC criterion, which is purely rank-based and thus misses quantitative binding information. Finally, we investigate whether adding DNA shape features can significantly improve the accuracy of binding models. We evaluate the ability of the gradient boosting classifiers generated by DNAshapedTFBS, an algorithm that takes account of DNA shape features, to differentiate ChIP-seq peaks from random background sequences, and compare them with various matrix-based binding models. The results indicate that, compared with optimized PWMs, adding DNA shape features does not produce significantly better binding models and may increase the risk of overfitting on training datasets

    Tuning transcriptional regulation through signaling: A predictive theory of allosteric induction

    Full text link
    Allosteric regulation is found across all domains of life, yet we still lack simple, predictive theories that directly link the experimentally tunable parameters of a system to its input-output response. To that end, we present a general theory of allosteric transcriptional regulation using the Monod-Wyman-Changeux model. We rigorously test this model using the ubiquitous simple repression motif in bacteria by first predicting the behavior of strains that span a large range of repressor copy numbers and DNA binding strengths and then constructing and measuring their response. Our model not only accurately captures the induction profiles of these strains but also enables us to derive analytic expressions for key properties such as the dynamic range and [EC50][EC_{50}]. Finally, we derive an expression for the free energy of allosteric repressors which enables us to collapse our experimental data onto a single master curve that captures the diverse phenomenology of the induction profiles.Comment: Substantial revisions for resubmission (3 new figures, significantly elaborated discussion); added Professor Mitchell Lewis as another author for his continuing contributions to the projec

    Inferring Binding Energies from Selected Binding Sites

    Get PDF
    We employ a biophysical model that accounts for the non-linear relationship between binding energy and the statistics of selected binding sites. The model includes the chemical potential of the transcription factor, non-specific binding affinity of the protein for DNA, as well as sequence-specific parameters that may include non-independent contributions of bases to the interaction. We obtain maximum likelihood estimates for all of the parameters and compare the results to standard probabilistic methods of parameter estimation. On simulated data, where the true energy model is known and samples are generated with a variety of parameter values, we show that our method returns much more accurate estimates of the true parameters and much better predictions of the selected binding site distributions. We also introduce a new high-throughput SELEX (HT-SELEX) procedure to determine the binding specificity of a transcription factor in which the initial randomized library and the selected sites are sequenced with next generation methods that return hundreds of thousands of sites. We show that after a single round of selection our method can estimate binding parameters that give very good fits to the selected site distributions, much better than standard motif identification algorithms

    Quantitative Models of the Mechanisms That Control Genome-Wide Patterns of Transcription Factor Binding during Early Drosophila Development

    Get PDF
    Transcription factors that drive complex patterns of gene expression during animal development bind to thousands of genomic regions, with quantitative differences in binding across bound regions mediating their activity. While we now have tools to characterize the DNA affinities of these proteins and to precisely measure their genome-wide distribution in vivo, our understanding of the forces that determine where, when, and to what extent they bind remains primitive. Here we use a thermodynamic model of transcription factor binding to evaluate the contribution of different biophysical forces to the binding of five regulators of early embryonic anterior-posterior patterning in Drosophila melanogaster. Predictions based on DNA sequence and in vitro protein-DNA affinities alone achieve a correlation of ∼0.4 with experimental measurements of in vivo binding. Incorporating cooperativity and competition among the five factors, and accounting for spatial patterning by modeling binding in every nucleus independently, had little effect on prediction accuracy. A major source of error was the prediction of binding events that do not occur in vivo, which we hypothesized reflected reduced accessibility of chromatin. To test this, we incorporated experimental measurements of genome-wide DNA accessibility into our model, effectively restricting predicted binding to regions of open chromatin. This dramatically improved our predictions to a correlation of 0.6–0.9 for various factors across known target genes. Finally, we used our model to quantify the roles of DNA sequence, accessibility, and binding competition and cooperativity. Our results show that, in regions of open chromatin, binding can be predicted almost exclusively by the sequence specificity of individual factors, with a minimal role for protein interactions. We suggest that a combination of experimentally determined chromatin accessibility data and simple computational models of transcription factor binding may be used to predict the binding landscape of any animal transcription factor with significant precision
    corecore