462 research outputs found

    Revamping Timing Error Resilience to Tackle Choke Points at NTC

    Get PDF
    The growing market of portable devices and smart wearables has contributed to innovation and development of systems with longer battery-life. While Near Threshold Computing (NTC) systems address the need for longer battery-life, they have certain limitations. NTC systems are prone to be significantly affected by variations in the fabrication process, commonly called process variation (PV). This dissertation explores an intriguing effect of PV, called choke points. Choke points are especially important due to their multifarious influence on the functional correctness of an NTC system. This work shows why novel research is required in this direction and proposes two techniques to resolve the problems created by choke points, while maintaining the reduced power needs

    Revamping Timing Error Resilience to Tackle Choke Points at NTC

    Get PDF
    The growing market of portable devices and smart wearables has contributed to innovation and development of systems with longer battery-life. While Near Threshold Computing (NTC) systems address the need for longer battery-life, they have certain limitations. NTC systems are prone to be significantly affected by variations in the fabrication process, commonly called process variation (PV). This dissertation explores an intriguing effect of PV, called choke points. Choke points are especially important due to their multifarious influence on the functional correctness of an NTC system. This work shows why novel research is required in this direction and proposes two techniques to resolve the problems created by choke points, while maintaining the reduced power needs

    Exploiting Adaptive Techniques to Improve Processor Energy Efficiency

    Get PDF
    Rapid device-miniaturization keeps on inducing challenges in building energy efficient microprocessors. As the size of the transistors continuously decreasing, more uncertainties emerge in their operations. On the other hand, integrating more and more transistors on a single chip accentuates the need to lower its supply-voltage. This dissertation investigates one of the primary device uncertainties - timing error, in microprocessor performance bottleneck in NTC era. Then it proposes various innovative techniques to exploit these opportunities to maintain processor energy efficiency, in the context of emerging challenges. Evaluated with the cross-layer methodology, the proposed approaches achieve substantial improvements in processor energy efficiency, compared to other start-of-art techniques

    Tackling Choke Point Induced Performance Bottlenecks in a Near-Threshold GPGPU

    Get PDF
    Over the last decade, General Purpose Graphics Processing Units (GPGPUs) have garnered a substantial attention in the research community due to their extensive thread-level parallelism. GPGPUs provide a remarkable performance improvement over Central Processing Units (CPUs), for highly parallel applications. However, GPGPUs typically achieve this extensive thread-level parallelism at the cost of a large power consumption. Consequently, Near-Threshold Computing (NTC) provides a promising opportunity for designing energy-efficient GPGPUs (NTC-GPUs). However, NTC-GPUs suffer from a crucial Process Variation (PV)-inflicted performance bottleneck, which is called Choke Point. Choke Point is defined as one or small group of gates which is affected by PV. Choke Point is capable of varying the path-delay of circuit and causing different forms of timing violation. In this work, a cross-layer design technique is proposed to tackle the performance impediments caused by choke points in NTC-GPUs

    Combining Structural and Timing Errors in Overclocked Inexact Speculative Adders

    Get PDF
    Worst-case design is used in IoT devices and high performance data centers to ensure reliability, leading to a power efficiency loss. Recently, approximate computing has been proposed to trade off accuracy for efficiency. In this paper, we use Inexact Speculative Adders, which redesign the adder architecture to shorten its critical path and improve performance, but introduces controlled structural errors. On the other hand, overclocking is used to reduce conservative timing guardbands but could normally introduce catastrophic timing errors, we thus apply a supervised learning model to overclock speculative adders and predict their timing errors. We build a methodology to combine both structural and timing errors and analyze how they interplay with each other to limit the overal errors

    Predicting Critical Warps in Near-Threshold GPGPU Applications Using a Dynamic Choke Point Analysis

    Get PDF
    General purpose graphics processing units (GP-GPU), owing to their enormous thread-level parallelism, can significantly improve the power consumption at the near-threshold (NTC) operating region, while offering close to a super-threshold performance. However, process variation (PV) can drastically reduce the GPU performance at NTC. In this work, choke points—a unique device-level characteristic of PV at NTC—that can exacerbate the warp criticality problem in GPUs have been explored. It is shown that the modern warp schedulers cannot tackle the choke point induced critical warps in an NTC GPU. Additionally, Choke Point Aware Warp Speculator, a circuit-architectural solution is proposed to dynamically predict the critical warps in GPUs, and accelerate them in their respective execution units. The best scheme achieves an average improvement of ∼39% in performance, and ∼31% in energy-efficiency, over one state-of-the-art warp scheduler, across 15 GPGPU applications, while incurring marginal hardware overheads

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing

    Embracing Low-Power Systems with Improvement in Security and Energy-Efficiency

    Get PDF
    As the economies around the world are aligning more towards usage of computing systems, the global energy demand for computing is increasing rapidly. Additionally, the boom in AI based applications and services has already invited the pervasion of specialized computing hardware architectures for AI (accelerators). A big chunk of research in the industry and academia is being focused on providing energy efficiency to all kinds of power hungry computing architectures. This dissertation adds to these efforts. Aggressive voltage underscaling of chips is one the effective low power paradigms of providing energy efficiency. This dissertation identifies and deals with the reliability and performance problems associated with this paradigm and innovates novel energy efficient approaches. Specifically, the properties of a low power security primitive have been improved and, higher performance has been unlocked in an AI accelerator (Google TPU) in an aggressively voltage underscaled environment. And, novel power saving opportunities have been unlocked by characterizing the usage pattern of a baseline TPU with rigorous mathematical analysis

    Understanding Timing Error Characteristics From Overclocked Systolic Multiply–Accumulate Arrays in FPGAs

    Get PDF
    Artificial Intelligence (AI) hardware accelerators have seen tremendous developments in recent years due to the rapid growth of AI in multiple fields. Many such accelerators comprise a Systolic Multiply–Accumulate Array (SMA) as its computational brain. In this paper, we investigate the faulty output characterization of an SMA in a real silicon FPGA board. Experiments were run on a single Zybo Z7-20 board to control for process variation at nominal voltage and in small batches to control for temperature. The FPGA is rated up to 800 MHz in the data sheet due to the max frequency of the PLL, but the design is written using Verilog for the FPGA and C++ for the processor and synthesized with a chosen constraint of a 125 MHz clock. We then operate the system at a frequency range of 125 MHz to 450 MHz for the FPGA and the nominal 667 MHz for the processor core to produce timing errors in the FPGA without affecting the processor. Our extensive experimental platform with a hardware–software ecosystem provides a methodological pathway that reveals fascinating characteristics of SMA behavior under an overclocked environment. While one may intuitively expect that timing errors resulting from overclocked hardware may produce a wide variation in output values, our post-silicon evaluation reveals a lack of variation in erroneous output values. We found an intriguing pattern where error output values are stable for a given input across a range of operating frequencies far exceeding the rated frequency of the FPGA

    Approximate logic circuits: Theory and applications

    Get PDF
    CMOS technology scaling, the process of shrinking transistor dimensions based on Moore's law, has been the thrust behind increasingly powerful integrated circuits for over half a century. As dimensions are scaled to few tens of nanometers, process and environmental variations can significantly alter transistor characteristics, thus degrading reliability and reducing performance gains in CMOS designs with technology scaling. Although design solutions proposed in recent years to improve reliability of CMOS designs are power-efficient, the performance penalty associated with these solutions further reduces performance gains with technology scaling, and hence these solutions are not well-suited for high-performance designs. This thesis proposes approximate logic circuits as a new logic synthesis paradigm for reliable, high-performance computing systems. Given a specification, an approximate logic circuit is functionally equivalent to the given specification for a "significant" portion of the input space, but has a smaller delay and power as compared to a circuit implementation of the original specification. This contributions of this thesis include (i) a general theory of approximation and efficient algorithms for automated synthesis of approximations for unrestricted random logic circuits, (ii) logic design solutions based on approximate circuits to improve reliability of designs with negligible performance penalty, and (iii) efficient decomposition algorithms based on approxiiii mate circuits to improve performance of designs during logic synthesis. This thesis concludes with other potential applications of approximate circuits and identifies. open problems in logic decomposition and approximate circuit synthesis
    • …
    corecore