6,887 research outputs found

    Reading the Source Code of Social Ties

    Full text link
    Though online social network research has exploded during the past years, not much thought has been given to the exploration of the nature of social links. Online interactions have been interpreted as indicative of one social process or another (e.g., status exchange or trust), often with little systematic justification regarding the relation between observed data and theoretical concept. Our research aims to breach this gap in computational social science by proposing an unsupervised, parameter-free method to discover, with high accuracy, the fundamental domains of interaction occurring in social networks. By applying this method on two online datasets different by scope and type of interaction (aNobii and Flickr) we observe the spontaneous emergence of three domains of interaction representing the exchange of status, knowledge and social support. By finding significant relations between the domains of interaction and classic social network analysis issues (e.g., tie strength, dyadic interaction over time) we show how the network of interactions induced by the extracted domains can be used as a starting point for more nuanced analysis of online social data that may one day incorporate the normative grammar of social interaction. Our methods finds applications in online social media services ranging from recommendation to visual link summarization.Comment: 10 pages, 8 figures, Proceedings of the 2014 ACM conference on Web (WebSci'14

    On the Role of Social Identity and Cohesion in Characterizing Online Social Communities

    Get PDF
    Two prevailing theories for explaining social group or community structure are cohesion and identity. The social cohesion approach posits that social groups arise out of an aggregation of individuals that have mutual interpersonal attraction as they share common characteristics. These characteristics can range from common interests to kinship ties and from social values to ethnic backgrounds. In contrast, the social identity approach posits that an individual is likely to join a group based on an intrinsic self-evaluation at a cognitive or perceptual level. In other words group members typically share an awareness of a common category membership. In this work we seek to understand the role of these two contrasting theories in explaining the behavior and stability of social communities in Twitter. A specific focal point of our work is to understand the role of these theories in disparate contexts ranging from disaster response to socio-political activism. We extract social identity and social cohesion features-of-interest for large scale datasets of five real-world events and examine the effectiveness of such features in capturing behavioral characteristics and the stability of groups. We also propose a novel measure of social group sustainability based on the divergence in group discussion. Our main findings are: 1) Sharing of social identities (especially physical location) among group members has a positive impact on group sustainability, 2) Structural cohesion (represented by high group density and low average shortest path length) is a strong indicator of group sustainability, and 3) Event characteristics play a role in shaping group sustainability, as social groups in transient events behave differently from groups in events that last longer

    Evolution of Conversations in the Age of Email Overload

    Full text link
    Email is a ubiquitous communications tool in the workplace and plays an important role in social interactions. Previous studies of email were largely based on surveys and limited to relatively small populations of email users within organizations. In this paper, we report results of a large-scale study of more than 2 million users exchanging 16 billion emails over several months. We quantitatively characterize the replying behavior in conversations within pairs of users. In particular, we study the time it takes the user to reply to a received message and the length of the reply sent. We consider a variety of factors that affect the reply time and length, such as the stage of the conversation, user demographics, and use of portable devices. In addition, we study how increasing load affects emailing behavior. We find that as users receive more email messages in a day, they reply to a smaller fraction of them, using shorter replies. However, their responsiveness remains intact, and they may even reply to emails faster. Finally, we predict the time to reply, length of reply, and whether the reply ends a conversation. We demonstrate considerable improvement over the baseline in all three prediction tasks, showing the significant role that the factors that we uncover play, in determining replying behavior. We rank these factors based on their predictive power. Our findings have important implications for understanding human behavior and designing better email management applications for tasks like ranking unread emails.Comment: 11 page, 24th International World Wide Web Conferenc

    The Web as an Adaptive Network: Coevolution of Web Behavior and Web Structure

    No full text
    Much is known about the complex network structure of the Web, and about behavioral dynamics on the Web. A number of studies address how behaviors on the Web are affected by different network topologies, whilst others address how the behavior of users on the Web alters network topology. These represent complementary directions of influence, but they are generally not combined within any one study. In network science, the study of the coupled interaction between topology and behavior, or state-topology coevolution, is known as 'adaptive networks', and is a rapidly developing area of research. In this paper, we review the case for considering the Web as an adaptive network and several examples of state-topology coevolution on the Web. We also review some abstract results from recent literature in adaptive networks and discuss their implications for Web Science. We conclude that adaptive networks provide a formal framework for characterizing processes acting 'on' and 'of' the Web, and offers potential for identifying general organizing principles that seem otherwise illusive in Web Scienc

    The Lifecycles of Apps in a Social Ecosystem

    Full text link
    Apps are emerging as an important form of on-line content, and they combine aspects of Web usage in interesting ways --- they exhibit a rich temporal structure of user adoption and long-term engagement, and they exist in a broader social ecosystem that helps drive these patterns of adoption and engagement. It has been difficult, however, to study apps in their natural setting since this requires a simultaneous analysis of a large set of popular apps and the underlying social network they inhabit. In this work we address this challenge through an analysis of the collection of apps on Facebook Login, developing a novel framework for analyzing both temporal and social properties. At the temporal level, we develop a retention model that represents a user's tendency to return to an app using a very small parameter set. At the social level, we organize the space of apps along two fundamental axes --- popularity and sociality --- and we show how a user's probability of adopting an app depends both on properties of the local network structure and on the match between the user's attributes, his or her friends' attributes, and the dominant attributes within the app's user population. We also develop models that show the importance of different feature sets with strong performance in predicting app success.Comment: 11 pages, 10 figures, 3 tables, International World Wide Web Conferenc

    Searching for superspreaders of information in real-world social media

    Full text link
    A number of predictors have been suggested to detect the most influential spreaders of information in online social media across various domains such as Twitter or Facebook. In particular, degree, PageRank, k-core and other centralities have been adopted to rank the spreading capability of users in information dissemination media. So far, validation of the proposed predictors has been done by simulating the spreading dynamics rather than following real information flow in social networks. Consequently, only model-dependent contradictory results have been achieved so far for the best predictor. Here, we address this issue directly. We search for influential spreaders by following the real spreading dynamics in a wide range of networks. We find that the widely-used degree and PageRank fail in ranking users' influence. We find that the best spreaders are consistently located in the k-core across dissimilar social platforms such as Twitter, Facebook, Livejournal and scientific publishing in the American Physical Society. Furthermore, when the complete global network structure is unavailable, we find that the sum of the nearest neighbors' degree is a reliable local proxy for user's influence. Our analysis provides practical instructions for optimal design of strategies for "viral" information dissemination in relevant applications.Comment: 12 pages, 7 figure
    • …
    corecore