831 research outputs found

    Development of a Methodology for Condition-Based Maintenance in a Large-Scale Application Field

    Get PDF
    This paper describes a methodology, developed by the authors, for condition monitoring and diagnostics of several critical components in the large-scale applications with machines. For industry, the main target of condition monitoring is to prevent the machine stopping suddenly and thus avoid economic losses due to lack of production. Once the target is reached at a local level, usually through an R&D project, the extension to a large-scale market gives rise to new goals, such as low computational costs for analysis, easily interpretable results by local technicians, collection of data from worldwide machine installations, and the development of historical datasets to improve methodology, etc. This paper details an approach to condition monitoring, developed together with a multinational corporation, that covers all the critical points mentioned above

    Fault diagnosis and health management of bearings in rotating equipment based on vibration analysis – a review

    Get PDF
    There is an ever-increasing need to optimise bearing lifetime and maintenance cost through detecting faults at earlier stages. This can be achieved through improving diagnosis and prognosis of bearing faults to better determine bearing remaining useful life (RUL). Until now there has been limited research into the prognosis of bearing life in rotating machines. Towards the development of improved approaches to prognosis of bearing faults a review of fault diagnosis and health management systems research is presented. Traditional time and frequency domain extraction techniques together with machine learning algorithms, both traditional and deep learning, are considered as novel approaches for the development of new prognosis techniques. Different approaches make use of the advantages of each technique while overcoming the disadvantages towards the development of intelligent systems to determine the RUL of bearings. The review shows that while there are numerous approaches to diagnosis and prognosis, they are suitable for certain cases or are domain specific and cannot be generalised

    Machine Learning in Tribology

    Get PDF
    Tribology has been and continues to be one of the most relevant fields, being present in almost all aspects of our lives. The understanding of tribology provides us with solutions for future technical challenges. At the root of all advances made so far are multitudes of precise experiments and an increasing number of advanced computer simulations across different scales and multiple physical disciplines. Based upon this sound and data-rich foundation, advanced data handling, analysis and learning methods can be developed and employed to expand existing knowledge. Therefore, modern machine learning (ML) or artificial intelligence (AI) methods provide opportunities to explore the complex processes in tribological systems and to classify or quantify their behavior in an efficient or even real-time way. Thus, their potential also goes beyond purely academic aspects into actual industrial applications. To help pave the way, this article collection aimed to present the latest research on ML or AI approaches for solving tribology-related issues generating true added value beyond just buzzwords. In this sense, this Special Issue can support researchers in identifying initial selections and best practice solutions for ML in tribology

    Instantaneous failure mode remaining useful life estimation using non-uniformly sampled measurements from a reciprocating compressor valve failure

    Get PDF
    One of the major targets in industry is minimisation of downtime and cost, and maximisation of availability and safety, with maintenance considered a key aspect in achieving this objective. The concept of Condition Based Maintenance and Prognostics and Health Management (CBM/PHM) , which is founded on the principles of diagnostics, and prognostics, is a step towards this direction as it offers a proactive means for scheduling maintenance. Reciprocating compressors are vital components in oil and gas industry, though their maintenance cost is known to be relatively high. Compressor valves are the weakest part, being the most frequent failing component, accounting for almost half maintenance cost. To date, there has been limited information on estimating Remaining Useful Life (RUL) of reciprocating compressor in the open literature. This paper compares the prognostic performance of several methods (multiple linear regression, polynomial regression, Self-Organising Map (SOM), K-Nearest Neighbours Regression (KNNR)), in relation to their accuracy and precision, using actual valve failure data captured from an operating industrial compressor. The SOM technique is employed for the first time as a standalone tool for RUL estimation. Furthermore, two variations on estimating RUL based on SOM and KNNR respectively are proposed. Finally, an ensemble method by combining the output of all aforementioned algorithms is proposed and tested. Principal components analysis and statistical process control were implemented to create T^2 and Q metrics, which were proposed to be used as health indicators reflecting degradation processes and were employed for direct RUL estimation for the first time. It was shown that even when RUL is relatively short due to instantaneous nature of failure mode, it is feasible to perform good RUL estimates using the proposed techniques

    Friction, Vibration and Dynamic Properties of Transmission System under Wear Progression

    Get PDF
    This reprint focuses on wear and fatigue analysis, the dynamic properties of coating surfaces in transmission systems, and non-destructive condition monitoring for the health management of transmission systems. Transmission systems play a vital role in various types of industrial structure, including wind turbines, vehicles, mining and material-handling equipment, offshore vessels, and aircrafts. Surface wear is an inevitable phenomenon during the service life of transmission systems (such as on gearboxes, bearings, and shafts), and wear propagation can reduce the durability of the contact coating surface. As a result, the performance of the transmission system can degrade significantly, which can cause sudden shutdown of the whole system and lead to unexpected economic loss and accidents. Therefore, to ensure adequate health management of the transmission system, it is necessary to investigate the friction, vibration, and dynamic properties of its contact coating surface and monitor its operating conditions

    Challenges and opportunities of deep learning models for machinery fault detection and diagnosis: a review

    Get PDF
    In the age of industry 4.0, deep learning has attracted increasing interest for various research applications. In recent years, deep learning models have been extensively implemented in machinery fault detection and diagnosis (FDD) systems. The deep architecture's automated feature learning process offers great potential to solve problems with traditional fault detection and diagnosis (TFDD) systems. TFDD relies on manual feature selection, which requires prior knowledge of the data and is time intensive. However, the high performance of deep learning comes with challenges and costs. This paper presents a review of deep learning challenges related to machinery fault detection and diagnosis systems. The potential for future work on deep learning implementation in FDD systems is briefly discussed
    corecore