27 research outputs found

    Classifying Candidate Axioms via Dimensionality Reduction Techniques

    Get PDF
    We assess the role of similarity measures and learning methods in classifying candidate axioms for automated schema induction through kernel-based learning algorithms. The evaluation is based on (i) three different similarity measures between axioms, and (ii) two alternative dimensionality reduction techniques to check the extent to which the considered similarities allow to separate true axioms from false axioms. The result of the dimensionality reduction process is subsequently fed to several learning algorithms, comparing the accuracy of all combinations of similarity, dimensionality reduction technique, and classification method. As a result, it is observed that it is not necessary to use sophisticated semantics-based similarity measures to obtain accurate predictions, and furthermore that classification performance only marginally depends on the choice of the learning method. Our results open the way to implementing efficient surrogate models for axiom scoring to speed up ontology learning and schema induction methods

    Data-Driven Induction of Shadowed Sets Based on Grade of Fuzziness

    Get PDF
    We propose a procedure devoted to the induction of a shadowed set through the post-processing of a fuzzy set, which in turn is learned from labeled data. More precisely, the fuzzy set is inferred using a modified support vector clustering algorithm, enriched in order to optimize the fuzziness grade. Finally, the fuzzy set is transformed into a shadowed set through application of an optimal alpha-cut. The procedure is tested on synthetic and real-world datasets

    Simultaneous Learning of Fuzzy Sets

    Get PDF
    We extend a procedure based on support vector clustering and devoted to inferring the membership function of a fuzzy set to the case of a universe of discourse over which several fuzzy sets are defined. The extended approach learns simultaneously these sets without requiring as previous knowledge either their number or labels approximating membership values. This data-driven approach is completed via expert knowledge incorporation in the form of predefined shapes for the membership functions. The procedure is successfully tested on a benchmark

    Possibilistic networks: MAP query and computational analysis

    Get PDF
    International audienc

    Acta Polytechnica Hungarica 2015

    Get PDF

    Integration of Logic and Probability in Terminological and Inductive Reasoning

    Get PDF
    This thesis deals with Statistical Relational Learning (SRL), a research area combining principles and ideas from three important subfields of Artificial Intelligence: machine learn- ing, knowledge representation and reasoning on uncertainty. Machine learning is the study of systems that improve their behavior over time with experience; the learning process typi- cally involves a search through various generalizations of the examples, in order to discover regularities or classification rules. A wide variety of machine learning techniques have been developed in the past fifty years, most of which used propositional logic as a (limited) represen- tation language. Recently, more expressive knowledge representations have been considered, to cope with a variable number of entities as well as the relationships that hold amongst them. These representations are mostly based on logic that, however, has limitations when reason- ing on uncertain domains. These limitations have been lifted allowing a multitude of different formalisms combining probabilistic reasoning with logics, databases or logic programming, where probability theory provides a formal basis for reasoning on uncertainty. In this thesis we consider in particular the proposals for integrating probability in Logic Programming, since the resulting probabilistic logic programming languages present very in- teresting computational properties. In Probabilistic Logic Programming, the so-called "dis- tribution semantics" has gained a wide popularity. This semantics was introduced for the PRISM language (1995) but is shared by many other languages: Independent Choice Logic, Stochastic Logic Programs, CP-logic, ProbLog and Logic Programs with Annotated Disjunc- tions (LPADs). A program in one of these languages defines a probability distribution over normal logic programs called worlds. This distribution is then extended to queries and the probability of a query is obtained by marginalizing the joint distribution of the query and the programs. The languages following the distribution semantics differ in the way they define the distribution over logic programs. The first part of this dissertation presents techniques for learning probabilistic logic pro- grams under the distribution semantics. Two problems are considered: parameter learning and structure learning, that is, the problems of inferring values for the parameters or both the structure and the parameters of the program from data. This work contributes an algorithm for parameter learning, EMBLEM, and two algorithms for structure learning (SLIPCASE and SLIPCOVER) of probabilistic logic programs (in particular LPADs). EMBLEM is based on the Expectation Maximization approach and computes the expectations directly on the Binary De- cision Diagrams that are built for inference. SLIPCASE performs a beam search in the space of LPADs while SLIPCOVER performs a beam search in the space of probabilistic clauses and a greedy search in the space of LPADs, improving SLIPCASE performance. All learning approaches have been evaluated in several relational real-world domains. The second part of the thesis concerns the field of Probabilistic Description Logics, where we consider a logical framework suitable for the Semantic Web. Description Logics (DL) are a family of formalisms for representing knowledge. Research in the field of knowledge repre- sentation and reasoning is usually focused on methods for providing high-level descriptions of the world that can be effectively used to build intelligent applications. Description Logics have been especially effective as the representation language for for- mal ontologies. Ontologies model a domain with the definition of concepts and their properties and relations. Ontologies are the structural frameworks for organizing information and are used in artificial intelligence, the Semantic Web, systems engineering, software engineering, biomedical informatics, etc. They should also allow to ask questions about the concepts and in- stances described, through inference procedures. Recently, the issue of representing uncertain information in these domains has led to probabilistic extensions of DLs. The contribution of this dissertation is twofold: (1) a new semantics for the Description Logic SHOIN(D) , based on the distribution semantics for probabilistic logic programs, which embeds probability; (2) a probabilistic reasoner for computing the probability of queries from uncertain knowledge bases following this semantics. The explanations of queries are encoded in Binary Decision Diagrams, with the same technique employed in the learning systems de- veloped for LPADs. This approach has been evaluated on a real-world probabilistic ontology

    Smart Energy Management for Smart Grids

    Get PDF
    This book is a contribution from the authors, to share solutions for a better and sustainable power grid. Renewable energy, smart grid security and smart energy management are the main topics discussed in this book

    Proceedings of the 5th International Workshop "What can FCA do for Artificial Intelligence?", FCA4AI 2016(co-located with ECAI 2016, The Hague, Netherlands, August 30th 2016)

    Get PDF
    International audienceThese are the proceedings of the fifth edition of the FCA4AI workshop (http://www.fca4ai.hse.ru/). Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data analysis and classification that can be used for many purposes, especially for Artificial Intelligence (AI) needs. The objective of the FCA4AI workshop is to investigate two main main issues: how can FCA support various AI activities (knowledge discovery, knowledge representation and reasoning, learning, data mining, NLP, information retrieval), and how can FCA be extended in order to help AI researchers to solve new and complex problems in their domain. Accordingly, topics of interest are related to the following: (i) Extensions of FCA for AI: pattern structures, projections, abstractions. (ii) Knowledge discovery based on FCA: classification, data mining, pattern mining, functional dependencies, biclustering, stability, visualization. (iii) Knowledge processing based on concept lattices: modeling, representation, reasoning. (iv) Application domains: natural language processing, information retrieval, recommendation, mining of web of data and of social networks, etc

    Trustworthiness in Social Big Data Incorporating Semantic Analysis, Machine Learning and Distributed Data Processing

    Get PDF
    This thesis presents several state-of-the-art approaches constructed for the purpose of (i) studying the trustworthiness of users in Online Social Network platforms, (ii) deriving concealed knowledge from their textual content, and (iii) classifying and predicting the domain knowledge of users and their content. The developed approaches are refined through proof-of-concept experiments, several benchmark comparisons, and appropriate and rigorous evaluation metrics to verify and validate their effectiveness and efficiency, and hence, those of the applied frameworks
    corecore