403 research outputs found

    A review of machine learning applications in wildfire science and management

    Full text link
    Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.Comment: 83 pages, 4 figures, 3 table

    Research on Soil Erosion

    Get PDF
    Soil loss for erosion is a natural phenomenon in soil dynamics, influenced by climate, soil intrinsic properties, and morphology, that can both trigger and enhance the process. Anthropic activities, like inappropriate agricultural practices, deforestation, overgrazing, forest fires and construction activities, may exert a remarkable impact on erosion processes or, on the other hand, contribute to soil erosion mitigation through a sustainable management of natural resources. The book is the continuation of previously published "Soil Erosion Studies"; it is organized in a unique section collecting nine chapters focusing on a variety of aspects of the erosion phenomena

    Wildfire Risk Assessment Using Convolutional Neural Networks And MODIS Climate Data

    Get PDF
    Wildfires burn millions of acres of land each year leading to the destruction of homes and wildland ecosystems while costing governments billions in funding. As climate change intensifies drought volatility across the Western United States, wildfires are likely to become increasingly severe. Wildfire risk assessment and hazard maps are currently employed by fire services, but can often be outdated. This paper introduces an image-based dataset using climate and wildfire data from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). The dataset consists of 32 climate and topographical layers captured across 0.1 deg by 0.1 deg tiled regions in California and Nevada between 2015 and 2020, associated with whether the region later saw a wildfire incident. We trained a convolutional neural network (CNN) with the generated dataset to predict whether a region will see a wildfire incident given the climate data of that region. Convolutional neural networks are able to find spatial patterns in their multi-dimensional inputs, providing an additional layer of inference when compared to logistic regression (LR) or artificial neural network (ANN) models. To further understand feature importance, we performed an ablation study, concluding that vegetation products, fire history, water content, and evapotranspiration products resulted in increases in model performance, while land information products did not. While the novel convolutional neural network model did not show a large improvement over previous models, it retained the highest holistic measures such as area under the curve and average precision, indicating it is still a strong competitor to existing models. This introduction of the convolutional neural network approach expands the wealth of knowledge for the prediction of wildfire incidents and proves the usefulness of the novel, image-based dataset

    Spatial Analysis for Landscape Changes

    Get PDF
    Recent increasing trends of the occurrence of natural and anthropic processes have a strong impact on landscape modification, and there is a growing need for the implementation of effective instruments, tools, and approaches to understand and manage landscape changes. A great improvement in the availability of high-resolution DEMs, GIS tools, and algorithms of automatic extraction of landform features and change detections has favored an increase in the analysis of landscape changes, which became an essential instrument for the quantitative evaluation of landscape changes in many research fields. One of the most effective ways of investigating natural landscape changes is the geomorphological one, which benefits from recent advances in the development of digital elevation model (DEM) comparison software and algorithms, image change detection, and landscape evolution models. This Special Issue collects six papers concerning the application of traditional and innovative multidisciplinary methods in several application fields, such as geomorphology, urban and territorial systems, vegetation restoration, and soil science. The papers include multidisciplinary studies that highlight the usefulness of quantitative analyses of satellite images and UAV-based DEMs, the application of Landscape Evolution Models (LEMs) and automatic landform classification algorithms to solve multidisciplinary issues of landscape changes. A review article is also presented, dealing with the bibliometric analysis of the research topic

    Application of Climatic Data in Hydrologic Models

    Get PDF
    Over the past few decades, global warming and climate change have impacted the hydrologic cycle. Many models have been developed to simulate hydrologic processes. Obtaining accurate climatic data on local/meso, and global scales is essential for the realistic simulation of hydrologic processes. However, the limited availability of climatic data often poses a challenge to hydrologic modeling efforts. Hydrologic science is currently undergoing a revolution in which the field is being transformed by the multitude of newly available data streams. Historically, hydrologic models that have been developed to answer basic questions about the rainfall–runoff relationship, surface water, and groundwater storage/fluxes, land–atmosphere interactions, have been optimized for previously data-limited conditions. With the advent of remote sensing technologies and increased computational resources, the environment for water cycle researchers has fundamentally changed to one where there is now a flood of spatially distributed and time-dependent data. The bias in the climatic data is propagated through models and can yield estimation errors. Therefore, the bias in climatic data should be removed before their use in hydrologic models. Climatic data have been a core component of the science of hydrology. Their intrinsic role in understanding and managing water resources and developing sound water policies dictates their vital importance. This book aims to present recent advances concerning climatic data and their applications in hydrologic models
    corecore