339 research outputs found

    Predicting the effect of home Wi-Fi quality on Web QoE

    Get PDF
    International audienceWi-Fi is the preferred way of accessing the Internet for many devices at home, but it is vulnerable to performance problems. The analysis of Wi-Fi quality metrics such as RSSI or PHY rate may indicate a number of problems, but users may not notice many of these problems if they don't degrade the performance of the applications they are using. In this work, we study the effects of the home Wi-Fi quality on Web browsing experience. We instrument a commodity access point (AP) to passively monitor Wi-Fi metrics and study the relationship between Wi-Fi metrics and Web QoE through controlled experiments in a Wi-Fi testbed. We use support vector regression to build a predictor of Web QoE when given Wi-Fi quality metrics available in most commercial APs. Our validation shows root-mean square errors on MOS predictions of 0.6432 in a controlled environment and of 0.9283 in our lab. We apply our predictor on Wi-Fi metrics collected in the wild from 4,880 APs to shed light on how Wi-Fi quality affects Web QoE in real homes

    Predicting the effect of home Wi-Fi quality on QoE

    Get PDF
    International audiencePoor Wi-Fi quality can disrupt home users' internet experience, or the Quality of Experience (QoE). Detecting when Wi-Fi degrades QoE is extremely valuable for residential Internet Service Providers (ISPs) as home users often hold the ISP responsible whenever QoE degrades. Yet, ISPs have little visibility within the home to assist users. Our goal is to develop a system that runs on commodity access points (APs) to assist ISPs in detecting when Wi-Fi degrades QoE. Our first contribution is to develop a method to detect instances of poor QoE based on the passive observation of Wi-Fi quality metrics available in commodity APs (e.g., PHY rate). We use support vector regression to build predictors of QoE given Wi-Fi quality for popular internet applications. We then use K-means clustering to combine per-application predictors to identify regions of Wi-Fi quality where QoE is poor across applications. We call samples in these regions as poor QoE samples. Our second contribution is to apply our predictors to Wi-Fi metrics collected over one month from 3479 APs of customers of a large residential ISP. Our results show that QoE is good most of the time, still we find 11.6% of poor QoE samples. Worse, approximately 21% of stations have more than 25% poor QoE samples. In some cases, we estimate that Wi-Fi quality causes poor QoE for many hours, though in most cases poor QoE events are short

    Predicting the effect of home Wi-Fi quality on QoE: Extended Technical Report

    Get PDF
    Poor Wi-Fi quality can disrupt home users' internet experience, or the Quality of Experience (QoE). Detecting when Wi-Fi degrades QoE is extremely valuable for residential Internet Service Providers (ISPs) as home users often hold the ISP responsible whenever QoE degrades. Yet, ISPs have little visibility within the home to assist users. Our goal is to develop a system that runs on commodity access points (APs) to assist ISPs in detecting when Wi-Fi degrades QoE. Our first contribution is to develop a method to detect instances of poor QoE based on the passive observation of Wi-Fi quality metrics available in commodity APs (e.g., PHY rate). We use support vector regression to build predictors of QoE given Wi-Fi quality for popular internet applications. We then use K-means clustering to combine per-application predictors to identify regions of Wi-Fi quality where QoE is poor across applications. We call samples in these regions as poor QoE samples. Our second contribution is to apply our predictors to Wi-Fi metrics collected over one month from 3479 APs of customers of a large residential ISP. Our results show that QoE is good most of the time, still we find 11.6% of poor QoE samples. Worse, approximately 21% of stations have more than 25% poor QoE samples. In some cases, we estimate that Wi-Fi quality causes poor QoE for many hours, though in most cases poor QoE events are short

    Understanding user experience of mobile video: Framework, measurement, and optimization

    Get PDF
    Since users have become the focus of product/service design in last decade, the term User eXperience (UX) has been frequently used in the field of Human-Computer-Interaction (HCI). Research on UX facilitates a better understanding of the various aspects of the user’s interaction with the product or service. Mobile video, as a new and promising service and research field, has attracted great attention. Due to the significance of UX in the success of mobile video (Jordan, 2002), many researchers have centered on this area, examining users’ expectations, motivations, requirements, and usage context. As a result, many influencing factors have been explored (Buchinger, Kriglstein, Brandt & Hlavacs, 2011; Buchinger, Kriglstein & Hlavacs, 2009). However, a general framework for specific mobile video service is lacking for structuring such a great number of factors. To measure user experience of multimedia services such as mobile video, quality of experience (QoE) has recently become a prominent concept. In contrast to the traditionally used concept quality of service (QoS), QoE not only involves objectively measuring the delivered service but also takes into account user’s needs and desires when using the service, emphasizing the user’s overall acceptability on the service. Many QoE metrics are able to estimate the user perceived quality or acceptability of mobile video, but may be not enough accurate for the overall UX prediction due to the complexity of UX. Only a few frameworks of QoE have addressed more aspects of UX for mobile multimedia applications but need be transformed into practical measures. The challenge of optimizing UX remains adaptations to the resource constrains (e.g., network conditions, mobile device capabilities, and heterogeneous usage contexts) as well as meeting complicated user requirements (e.g., usage purposes and personal preferences). In this chapter, we investigate the existing important UX frameworks, compare their similarities and discuss some important features that fit in the mobile video service. Based on the previous research, we propose a simple UX framework for mobile video application by mapping a variety of influencing factors of UX upon a typical mobile video delivery system. Each component and its factors are explored with comprehensive literature reviews. The proposed framework may benefit in user-centred design of mobile video through taking a complete consideration of UX influences and in improvement of mobile videoservice quality by adjusting the values of certain factors to produce a positive user experience. It may also facilitate relative research in the way of locating important issues to study, clarifying research scopes, and setting up proper study procedures. We then review a great deal of research on UX measurement, including QoE metrics and QoE frameworks of mobile multimedia. Finally, we discuss how to achieve an optimal quality of user experience by focusing on the issues of various aspects of UX of mobile video. In the conclusion, we suggest some open issues for future study

    A network paradigm for very high capacity mobile and fixed telecommunications ecosystem sustainable evolution

    Full text link
    For very high capacity networks (VHC), the main objective is to improve the quality of the end-user experience. This implies compliance with key performance indicators (KPIs) required by applications. Key performance indicators at the application level are throughput, download time, round trip time, and video delay. They depend on the end-to-end connection between the server and the end-user device. For VHC networks, Telco operators must provide the required application quality. Moreover, they must meet the objectives of economic sustainability. Today, Telco operators rarely achieve the above objectives, mainly due to the push to increase the bit-rate of access networks without considering the end-to-end KPIs of the applications. The main contribution of this paper concerns the definition of a deployment framework to address performance and cost issues for VHC networks. We show three actions on which it is necessary to focus. First, limiting bit-rate through video compression. Second, contain the rate of packet loss through artificial intelligence algorithms for line stabilization. Third, reduce latency (i.e., round-trip time) with edge-cloud computing. The concerted and gradual application of these measures can allow a Telco to get out of the ultra-broadband "trap" of the access network, as defined in the paper. We propose to work on end-to-end optimization of the bandwidth utilization ratio. This leads to a better performance experienced by the end-user. It also allows a Telco operator to create new business models and obtain new revenue streams at a sustainable cost. To give a clear example, we describe how to realize mobile virtual and augmented reality, which is one of the most challenging future services.Comment: 42 pages, 4 tables, 6 figures. v2: Revised Englis

    Exploring traffic and QoS management mechanisms to support mobile cloud computing using service localisation in heterogeneous environments

    Get PDF
    In recent years, mobile devices have evolved to support an amalgam of multimedia applications and content. However, the small size of these devices poses a limit the amount of local computing resources. The emergence of Cloud technology has set the ground for an era of task offloading for mobile devices and we are now seeing the deployment of applications that make more extensive use of Cloud processing as a means of augmenting the capabilities of mobiles. Mobile Cloud Computing is the term used to describe the convergence of these technologies towards applications and mechanisms that offload tasks from mobile devices to the Cloud. In order for mobile devices to access Cloud resources and successfully offload tasks there, a solution for constant and reliable connectivity is required. The proliferation of wireless technology ensures that networks are available almost everywhere in an urban environment and mobile devices can stay connected to a network at all times. However, user mobility is often the cause of intermittent connectivity that affects the performance of applications and ultimately degrades the user experience. 5th Generation Networks are introducing mechanisms that enable constant and reliable connectivity through seamless handovers between networks and provide the foundation for a tighter coupling between Cloud resources and mobiles. This convergence of technologies creates new challenges in the areas of traffic management and QoS provisioning. The constant connectivity to and reliance of mobile devices on Cloud resources have the potential of creating large traffic flows between networks. Furthermore, depending on the type of application generating the traffic flow, very strict QoS may be required from the networks as suboptimal performance may severely degrade an application’s functionality. In this thesis, I propose a new service delivery framework, centred on the convergence of Mobile Cloud Computing and 5G networks for the purpose of optimising service delivery in a mobile environment. The framework is used as a guideline for identifying different aspects of service delivery in a mobile environment and for providing a path for future research in this field. The focus of the thesis is placed on the service delivery mechanisms that are responsible for optimising the QoS and managing network traffic. I present a solution for managing traffic through dynamic service localisation according to user mobility and device connectivity. I implement a prototype of the solution in a virtualised environment as a proof of concept and demonstrate the functionality and results gathered from experimentation. Finally, I present a new approach to modelling network performance by taking into account user mobility. The model considers the overall performance of a persistent connection as the mobile node switches between different networks. Results from the model can be used to determine which networks will negatively affect application performance and what impact they will have for the duration of the user's movement. The proposed model is evaluated using an analytical approac

    QoE over-the-top multimédia em redes sem fios

    Get PDF
    One of the goals of an operator is to improve the Quality of Experience (QoE) of a client in networks where Over-the-top (OTT) content is being delivered. The appearance of services like YouTube, Netflix or Twitch, where in the first case it contains more than 300 hours of video per minute in the platform, brings issues to the managed data networks that already exist, as well as challenges to fix them. Video traffic corresponds to 75% of the whole transmitted data on the Internet. This way, not only the Internet did become the ’de facto’ video transmission path, but also the general data traffic continues to exponentially increase, due to the desire to consume more content. This thesis presents two model proposals and architecture that aim to improve the users’ quality of experience, by predicting the amount of video in advance liable of being prefetched, as a way to optimize the delivery efficiency where the quality of service cannot be guaranteed. The prefetch is done in the clients’ closest cache server. For that, an Analytic Hierarchy Process (AHP) is used, where through a subjective method of attribute comparison, and from the application of a weighted function on the measured quality of service metrics, the amount of prefetch is achieved. Besides this method, artificial intelligence techniques are also taken into account. With neural networks, there is an attempt of selflearning with the behavior of OTT networks with more than 14.000 hours of video consumption under different quality conditions, to try to estimate the experience felt and maximize it, without the normal service delivery degradation. At last, both methods are evaluated and a proof of concept is made with users in a high speed train.Um dos objetivos de um operador é melhorar a qualidade de experiência do cliente em redes onde existem conteúdos Over-the-top (OTT) a serem entregues. O aparecimento de serviços como o YouTube, Netflix ou Twitch, onde no primeiro caso são carregadas mais de 300 horas de vídeo por minuto na plataforma, vem trazer problemas às redes de dados geridas que já existiam, assim como desafios para os resolver. O tráfego de vídeo corresponde a 75% de todos os dados transmitidos na Internet. Assim, não só a Internet se tornou o meio de transmissão de vídeo ’de facto’, como o tráfego de dados em geral continua a crescer exponencialmente, proveniente do desejo de consumir mais conteúdos. Esta tese apresenta duas propostas de modelos e arquitetura que pretendem melhorar a qualidade de experiência do utilizador, ao prever a quantidade de vídeo em avanço passível de ser précarregado, de forma a optimizar a eficiência de entrega das redes onde a qualidade de serviço não é possível de ser garantida. O pré-carregamento dos conteúdos é feito no servidor de cache mais próximo do cliente. Para tal, é utilizado um processo analítico hierárquico (AHP), onde através de um método subjetivo de comparação de atributos, e da aplicação de uma função de valores ponderados nas medições das métricas de qualidade de serviço, é obtida a quantidade a pré-carregar. Além deste método, é também proposta uma abordagem com técnicas de inteligência artificial. Através de redes neurais, há uma tentativa de auto-aprendizagem do comportamento das redes OTT com mais de 14.000 horas de consumo de vídeo sobre diferentes condições de qualidade, para se tentar estimar a experiência sentida e maximizar a mesma, sem degradação da entrega de serviço normal. No final, ambos os métodos propostos são avaliados num cenário de utilizadores num comboio a alta velocidade.Mestrado em Engenharia de Computadores e Telemátic

    A Survey of Machine Learning Techniques for Video Quality Prediction from Quality of Delivery Metrics

    Get PDF
    A growing number of video streaming networks are incorporating machine learning (ML) applications. The growth of video streaming services places enormous pressure on network and video content providers who need to proactively maintain high levels of video quality. ML has been applied to predict the quality of video streams. Quality of delivery (QoD) measurements, which capture the end-to-end performances of network services, have been leveraged in video quality prediction. The drive for end-to-end encryption, for privacy and digital rights management, has brought about a lack of visibility for operators who desire insights from video quality metrics. In response, numerous solutions have been proposed to tackle the challenge of video quality prediction from QoD-derived metrics. This survey provides a review of studies that focus on ML techniques for predicting the QoD metrics in video streaming services. In the context of video quality measurements, we focus on QoD metrics, which are not tied to a particular type of video streaming service. Unlike previous reviews in the area, this contribution considers papers published between 2016 and 2021. Approaches for predicting QoD for video are grouped under the following headings: (1) video quality prediction under QoD impairments, (2) prediction of video quality from encrypted video streaming traffic, (3) predicting the video quality in HAS applications, (4) predicting the video quality in SDN applications, (5) predicting the video quality in wireless settings, and (6) predicting the video quality in WebRTC applications. Throughout the survey, some research challenges and directions in this area are discussed, including (1) machine learning over deep learning; (2) adaptive deep learning for improved video delivery; (3) computational cost and interpretability; (4) self-healing networks and failure recovery. The survey findings reveal that traditional ML algorithms are the most widely adopted models for solving video quality prediction problems. This family of algorithms has a lot of potential because they are well understood, easy to deploy, and have lower computational requirements than deep learning techniques
    corecore