5,540 research outputs found

    Fuzzy set and cache-based approach for bug triaging

    Get PDF
    Software bugs are inevitable and bug fixing is an essential and costly phase during software development. Such defects are often reported in bug reports which are stored in an issue tracking system, or bug repository. Such reports need to be assigned to the most appropriate developers who will eventually fix the issue/bug reported. This process is often called Bug Triaging. Manual bug triaging is a difficult, expensive, and lengthy process, since it needs the bug triager to manually read, analyze, and assign bug fixers for each newly reported bug. Triagers can become overwhelmed by the number of reports added to the repository. Time and efforts spent into triaging typically diverts valuable resources away from the improvement of the product to the managing of the development process. To assist triagers and improve the bug triaging efficiency and reduce its cost, this thesis proposes Bugzie, a novel approach for automatic bug triaging based on fuzzy set and cachebased modeling of the bug-fixing capability of developers. Our evaluation results on seven large-scale subject systems show that Bugzie achieves significantly higher levels of efficiency and correctness than existing state-of-the-art approaches. In these subject projects, Bugzie\u27s accuracy for top-1 and top-5 recommendations is higher than those of the second best approach from 4-15% and 6-31%, respectively as Bugzie\u27s top-1 and top-5 recommendation accuracy is generally in the range of 31-51% and 70-83%, respectively. Importantly, existing approaches take from hours to days (even almost a month) to finish training as well as predicting, while in Bugzie, training time is from tens of minutes to an hour

    Towards Automated Performance Bug Identification in Python

    Full text link
    Context: Software performance is a critical non-functional requirement, appearing in many fields such as mission critical applications, financial, and real time systems. In this work we focused on early detection of performance bugs; our software under study was a real time system used in the advertisement/marketing domain. Goal: Find a simple and easy to implement solution, predicting performance bugs. Method: We built several models using four machine learning methods, commonly used for defect prediction: C4.5 Decision Trees, Na\"{\i}ve Bayes, Bayesian Networks, and Logistic Regression. Results: Our empirical results show that a C4.5 model, using lines of code changed, file's age and size as explanatory variables, can be used to predict performance bugs (recall=0.73, accuracy=0.85, and precision=0.96). We show that reducing the number of changes delivered on a commit, can decrease the chance of performance bug injection. Conclusions: We believe that our approach can help practitioners to eliminate performance bugs early in the development cycle. Our results are also of interest to theoreticians, establishing a link between functional bugs and (non-functional) performance bugs, and explicitly showing that attributes used for prediction of functional bugs can be used for prediction of performance bugs
    • …
    corecore