241 research outputs found

    A brain-machine interface for assistive robotic control

    Get PDF
    Brain-machine interfaces (BMIs) are the only currently viable means of communication for many individuals suffering from locked-in syndrome (LIS) – profound paralysis that results in severely limited or total loss of voluntary motor control. By inferring user intent from task-modulated neurological signals and then translating those intentions into actions, BMIs can enable LIS patients increased autonomy. Significant effort has been devoted to developing BMIs over the last three decades, but only recently have the combined advances in hardware, software, and methodology provided a setting to realize the translation of this research from the lab into practical, real-world applications. Non-invasive methods, such as those based on the electroencephalogram (EEG), offer the only feasible solution for practical use at the moment, but suffer from limited communication rates and susceptibility to environmental noise. Maximization of the efficacy of each decoded intention, therefore, is critical. This thesis addresses the challenge of implementing a BMI intended for practical use with a focus on an autonomous assistive robot application. First an adaptive EEG- based BMI strategy is developed that relies upon code-modulated visual evoked potentials (c-VEPs) to infer user intent. As voluntary gaze control is typically not available to LIS patients, c-VEP decoding methods under both gaze-dependent and gaze- independent scenarios are explored. Adaptive decoding strategies in both offline and online task conditions are evaluated, and a novel approach to assess ongoing online BMI performance is introduced. Next, an adaptive neural network-based system for assistive robot control is presented that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. Exploratory learning, or “learning by doing,” is an unsupervised method in which the robot is able to build an internal model for motor planning and coordination based on real-time sensory inputs received during exploration. Finally, a software platform intended for practical BMI application use is developed and evaluated. Using online c-VEP methods, users control a simple 2D cursor control game, a basic augmentative and alternative communication tool, and an assistive robot, both manually and via high-level goal-oriented commands

    Speech Processes for Brain-Computer Interfaces

    Get PDF
    Speech interfaces have become widely used and are integrated in many applications and devices. However, speech interfaces require the user to produce intelligible speech, which might be hindered by loud environments, concern to bother bystanders or the general in- ability to produce speech due to disabilities. Decoding a usera s imagined speech instead of actual speech would solve this problem. Such a Brain-Computer Interface (BCI) based on imagined speech would enable fast and natural communication without the need to actually speak out loud. These interfaces could provide a voice to otherwise mute people. This dissertation investigates BCIs based on speech processes using functional Near In- frared Spectroscopy (fNIRS) and Electrocorticography (ECoG), two brain activity imaging modalities on opposing ends of an invasiveness scale. Brain activity data have low signal- to-noise ratio and complex spatio-temporal and spectral coherence. To analyze these data, techniques from the areas of machine learning, neuroscience and Automatic Speech Recog- nition are combined in this dissertation to facilitate robust classification of detailed speech processes while simultaneously illustrating the underlying neural processes. fNIRS is an imaging modality based on cerebral blood flow. It only requires affordable hardware and can be set up within minutes in a day-to-day environment. Therefore, it is ideally suited for convenient user interfaces. However, the hemodynamic processes measured by fNIRS are slow in nature and the technology therefore offers poor temporal resolution. We investigate speech in fNIRS and demonstrate classification of speech processes for BCIs based on fNIRS. ECoG provides ideal signal properties by invasively measuring electrical potentials artifact- free directly on the brain surface. High spatial resolution and temporal resolution down to millisecond sampling provide localized information with accurate enough timing to capture the fast process underlying speech production. This dissertation presents the Brain-to- Text system, which harnesses automatic speech recognition technology to decode a textual representation of continuous speech from ECoG. This could allow to compose messages or to issue commands through a BCI. While the decoding of a textual representation is unparalleled for device control and typing, direct communication is even more natural if the full expressive power of speech - including emphasis and prosody - could be provided. For this purpose, a second system is presented, which directly synthesizes neural signals into audible speech, which could enable conversation with friends and family through a BCI. Up to now, both systems, the Brain-to-Text and synthesis system are operating on audibly produced speech. To bridge the gap to the final frontier of neural prostheses based on imagined speech processes, we investigate the differences between audibly produced and imagined speech and present first results towards BCI from imagined speech processes. This dissertation demonstrates the usage of speech processes as a paradigm for BCI for the first time. Speech processes offer a fast and natural interaction paradigm which will help patients and healthy users alike to communicate with computers and with friends and family efficiently through BCIs
    • …
    corecore