76,315 research outputs found

    Predicting Students’ Final Degree Classification Using an Extended Profile

    Get PDF
    The students’ progression and attainment gap are considered as key performance indicators of many universities worldwide. Therefore, universities invest significantly in resources to reduce the attainment gap between good and poor performing students. In this regard, various mathematical models have been utilised to predict students’ performances in the hope of informing the support team to intervene at an early stage of the at risk student’s at the university. In this work, we used a combination of institutional, academic, demographic, psychological and economic factors to predict students’ performances using a multi-layered neural network (NN) to classify students’ degrees into either a good or basic degree class. To our knowledge, the usage of such an extended profile is novel. A feed-forward network with 100 nodes in the hidden layer trained using Levenberg-Marquardt learning algorithm was able to achieve the best performance with an average classification accuracy of 83.7%, sensitivity of 77.37%, specificity of 85.16%, Positive Predictive Value of 94.04%, and Negative Predictive Value of 50.93%. The NN model was also compared against other classi?ers specifically k-Nearest Neighbour, Decision Tree and Support Vector Machine on the same dataset using the same features. The results indicate that the NN outperforms all other classi?ers in terms of overall classification accuracy and shows promise for the method to be used in Student Success ventures in the universities in an automatic manner

    The classical origin of modern mathematics

    Get PDF
    The aim of this paper is to study the historical evolution of mathematical thinking and its spatial spreading. To do so, we have collected and integrated data from different online academic datasets. In its final stage, the database includes a large number (N~200K) of advisor-student relationships, with affiliations and keywords on their research topic, over several centuries, from the 14th century until today. We focus on two different topics, the evolving importance of countries and of the research disciplines over time. Moreover we study the database at three levels, its global statistics, the mesoscale networks connecting countries and disciplines, and the genealogical level

    Online Human-Bot Interactions: Detection, Estimation, and Characterization

    Full text link
    Increasing evidence suggests that a growing amount of social media content is generated by autonomous entities known as social bots. In this work we present a framework to detect such entities on Twitter. We leverage more than a thousand features extracted from public data and meta-data about users: friends, tweet content and sentiment, network patterns, and activity time series. We benchmark the classification framework by using a publicly available dataset of Twitter bots. This training data is enriched by a manually annotated collection of active Twitter users that include both humans and bots of varying sophistication. Our models yield high accuracy and agreement with each other and can detect bots of different nature. Our estimates suggest that between 9% and 15% of active Twitter accounts are bots. Characterizing ties among accounts, we observe that simple bots tend to interact with bots that exhibit more human-like behaviors. Analysis of content flows reveals retweet and mention strategies adopted by bots to interact with different target groups. Using clustering analysis, we characterize several subclasses of accounts, including spammers, self promoters, and accounts that post content from connected applications.Comment: Accepted paper for ICWSM'17, 10 pages, 8 figures, 1 tabl

    Towards personalization in digital libraries through ontologies

    Get PDF
    In this paper we describe a browsing and searching personalization system for digital libraries based on the use of ontologies for describing the relationships between all the elements which take part in a digital library scenario of use. The main goal of this project is to help the users of a digital library to improve their experience of use by means of two complementary strategies: first, by maintaining a complete history record of his or her browsing and searching activities, which is part of a navigational user profile which includes preferences and all the aspects related to community involvement; and second, by reusing all the knowledge which has been extracted from previous usage from other users with similar profiles. This can be accomplished in terms of narrowing and focusing the search results and browsing options through the use of a recommendation system which organizes such results in the most appropriate manner, using ontologies and concepts drawn from the semantic web field. The complete integration of the experience of use of a digital library in the learning process is also pursued. Both the usage and information organization can be also exploited to extract useful knowledge from the way users interact with a digital library, knowledge that can be used to improve several design aspects of the library, ranging from internal organization aspects to human factors and user interfaces. Although this project is still on an early development stage, it is possible to identify all the desired functionalities and requirements that are necessary to fully integrate the use of a digital library in an e-learning environment
    • 

    corecore