18,481 research outputs found

    Predictive coupled-cluster isomer orderings for some Sin{}_nCm{}_m (m,n≀12m, n\le 12) clusters; A pragmatic comparison between DFT and complete basis limit coupled-cluster benchmarks

    Full text link
    The accurate determination of the preferred Si12C12{\rm Si}_{12}{\rm C}_{12} isomer is important to guide experimental efforts directed towards synthesizing SiC nano-wires and related polymer structures which are anticipated to be highly efficient exciton materials for opto-electronic devices. In order to definitively identify preferred isomeric structures for silicon carbon nano-clusters, highly accurate geometries, energies and harmonic zero point energies have been computed using coupled-cluster theory with systematic extrapolation to the complete basis limit for set of silicon carbon clusters ranging in size from SiC3_3 to Si12C12{\rm Si}_{12}{\rm C}_{12}. It is found that post-MBPT(2) correlation energy plays a significant role in obtaining converged relative isomer energies, suggesting that predictions using low rung density functional methods will not have adequate accuracy. Utilizing the best composite coupled-cluster energy that is still computationally feasible, entailing a 3-4 SCF and CCSD extrapolation with triple-ΞΆ\zeta (T) correlation, the {\it closo} Si12C12{\rm Si}_{12}{\rm C}_{12} isomer is identified to be the preferred isomer in support of previous calculations [J. Chem. Phys. 2015, 142, 034303]. Additionally we have investigated more pragmatic approaches to obtaining accurate silicon carbide isomer energies, including the use of frozen natural orbital coupled-cluster theory and several rungs of standard and double-hybrid density functional theory. Frozen natural orbitals as a way to compute post MBPT(2) correlation energy is found to be an excellent balance between efficiency and accuracy

    Thermodynamically stable lithium silicides and germanides from density-functional theory calculations

    Full text link
    Density-functional-theory (DFT) calculations have been performed on the Li-Si and Li-Ge systems. Lithiated Si and Ge, including their metastable phases, play an important technological r\^ole as Li-ion battery (LIB) anodes. The calculations comprise structural optimisations on crystal structures obtained by swapping atomic species to Li-Si and Li-Ge from the X-Y structures in the International Crystal Structure Database, where X={Li,Na,K,Rb,Cs} and Y={Si,Ge,Sn,Pb}. To complement this at various Li-Si and Li-Ge stoichiometries, ab initio random structure searching (AIRSS) was also performed. Between the ground-state stoichiometries, including the recently found Li17_{17}Si4_{4} phase, the average voltages were calculated, indicating that germanium may be a safer alternative to silicon anodes in LIB, due to its higher lithium insertion voltage. Calculations predict high-density Li1_1Si1_1 and Li1_1Ge1_1 P4/mmmP4/mmm layered phases which become the ground state above 2.5 and 5 GPa respectively and reveal silicon and germanium's propensity to form dumbbells in the Lix_xSi, x=2.33βˆ’3.25x=2.33-3.25 stoichiometry range. DFT predicts the stability of the Li11_{11}Ge6_6 CmmmCmmm, Li12_{12}Ge7_7 PnmaPnma and Li7_7Ge3_3 P3212P32_12 phases and several new Li-Ge compounds, with stoichiometries Li5_5Ge2_2, Li13_{13}Ge5_5, Li8_8Ge3_3 and Li13_{13}Ge4_4.Comment: 10 pages, 5 figure

    Optical properties of cosmic dust analogs: A review

    Full text link
    Nanometer- and micrometer-sized solid particles play an important role in the evolutionary cycle of stars and interstellar matter. The optical properties of cosmic grains determine the interaction of the radiation field with the solids, thereby regulating the temperature structure and spectral appearance of dusty regions. Radiation pressure on dust grains and their collisions with the gas atoms and molecules can drive powerful winds. The analysis of observed spectral features, especially in the infrared wavelength range, provides important information on grain size, composition and structure as well as temperature and spatial distribution of the material. The relevant optical data for interstellar, circumstellar, and protoplanetary grains can be obtained by measurements on cosmic dust analogs in the laboratory or can be calculated from grain models based on optical constants. Both approaches have made progress in the last years, triggered by the need to interpret increasingly detailed high-quality astronomical observations. The statistical theoretical approach, spectroscopic experiments at variable temperature and absorption spectroscopy of aerosol particulates play an important role for the successful application of the data in dust astrophysics.Comment: 18 pages, 6 figures, invited review for Journal of Nanophotonics, Special Section to honour C.F. Bohre

    Optical excitations in organic molecules, clusters and defects studied by first-principles Green's function methods

    Full text link
    Spectroscopic and optical properties of nanosystems and point defects are discussed within the framework of Green's function methods. We use an approach based on evaluating the self-energy in the so-called GW approximation and solving the Bethe-Salpeter equation in the space of single-particle transitions. Plasmon-pole models or numerical energy integration, which have been used in most of the previous GW calculations, are not used. Fourier transforms of the dielectric function are also avoided. This approach is applied to benzene, naphthalene, passivated silicon clusters (containing more than one hundred atoms), and the F center in LiCl. In the latter, excitonic effects and the 1s→2p1s \to 2p defect line are identified in the energy-resolved dielectric function. We also compare optical spectra obtained by solving the Bethe-Salpeter equation and by using time-dependent density functional theory in the local, adiabatic approximation. From this comparison, we conclude that both methods give similar predictions for optical excitations in benzene and naphthalene, but they differ in the spectra of small silicon clusters. As cluster size increases, both methods predict very low cross section for photoabsorption in the optical and near ultra-violet ranges. For the larger clusters, the computed cross section shows a slow increase as function of photon frequency. Ionization potentials and electron affinities of molecules and clusters are also calculated.Comment: 9 figures, 5 tables, to appear in Phys. Rev. B, 200
    • …
    corecore