18,608 research outputs found

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods

    Get PDF
    Fertility rates have dramatically decreased in the last two decades, especially in men. It has been described that environmental factors as well as life habits may affect semen quality. In this paper we use artificial intelligence techniques in order to predict semen characteristics resulting from environmental factors, life habits, and health status, with these techniques constituting a possible decision support system that can help in the study of male fertility potential. A total of 123 young, healthy volunteers provided a semen sample that was analyzed according to the World Health Organization 2010 criteria. They also were asked to complete a validated questionnaire about life habits and health status. Sperm concentration and percentage of motile sperm were related to sociodemographic data, environmental factors, health status, and life habits in order to determine the predictive accuracy of a multilayer perceptron network, a type of artificial neural network. In conclusion, we have developed an artificial neural network that can predict the results of the semen analysis based on the data collected by the questionnaire. The semen parameter that is best predicted using this methodology is the sperm concentration. Although the accuracy for motility is slightly lower than that for concentration, it is possible to predict it with a significant degree of accuracy. This methodology can be a useful tool in early diagnosis of patients with seminal disorders or in the selection of candidates to become semen donors.This study was partially funded by Vicerrectorado de Investigación, University of Alicante, Alicante, Spain (Vigrob-137)

    Automatically detecting open academic review praise and criticism

    Get PDF
    This is an accepted manuscript of an article published by Emerald in Online Information Review on 15 June 2020. The accepted version of the publication may differ from the final published version, accessible at https://doi.org/10.1108/OIR-11-2019-0347.Purpose: Peer reviewer evaluations of academic papers are known to be variable in content and overall judgements but are important academic publishing safeguards. This article introduces a sentiment analysis program, PeerJudge, to detect praise and criticism in peer evaluations. It is designed to support editorial management decisions and reviewers in the scholarly publishing process and for grant funding decision workflows. The initial version of PeerJudge is tailored for reviews from F1000Research’s open peer review publishing platform. Design/methodology/approach: PeerJudge uses a lexical sentiment analysis approach with a human-coded initial sentiment lexicon and machine learning adjustments and additions. It was built with an F1000Research development corpus and evaluated on a different F1000Research test corpus using reviewer ratings. Findings: PeerJudge can predict F1000Research judgements from negative evaluations in reviewers’ comments more accurately than baseline approaches, although not from positive reviewer comments, which seem to be largely unrelated to reviewer decisions. Within the F1000Research mode of post-publication peer review, the absence of any detected negative comments is a reliable indicator that an article will be ‘approved’, but the presence of moderately negative comments could lead to either an approved or approved with reservations decision. Originality/value: PeerJudge is the first transparent AI approach to peer review sentiment detection. It may be used to identify anomalous reviews with text potentially not matching judgements for individual checks or systematic bias assessments

    A systematic review of the applications of Expert Systems (ES) and machine learning (ML) in clinical urology.

    Get PDF
    BackgroundTesting a hypothesis for 'factors-outcome effect' is a common quest, but standard statistical regression analysis tools are rendered ineffective by data contaminated with too many noisy variables. Expert Systems (ES) can provide an alternative methodology in analysing data to identify variables with the highest correlation to the outcome. By applying their effective machine learning (ML) abilities, significant research time and costs can be saved. The study aims to systematically review the applications of ES in urological research and their methodological models for effective multi-variate analysis. Their domains, development and validity will be identified.MethodsThe PRISMA methodology was applied to formulate an effective method for data gathering and analysis. This study search included seven most relevant information sources: WEB OF SCIENCE, EMBASE, BIOSIS CITATION INDEX, SCOPUS, PUBMED, Google Scholar and MEDLINE. Eligible articles were included if they applied one of the known ML models for a clear urological research question involving multivariate analysis. Only articles with pertinent research methods in ES models were included. The analysed data included the system model, applications, input/output variables, target user, validation, and outcomes. Both ML models and the variable analysis were comparatively reported for each system.ResultsThe search identified n = 1087 articles from all databases and n = 712 were eligible for examination against inclusion criteria. A total of 168 systems were finally included and systematically analysed demonstrating a recent increase in uptake of ES in academic urology in particular artificial neural networks with 31 systems. Most of the systems were applied in urological oncology (prostate cancer = 15, bladder cancer = 13) where diagnostic, prognostic and survival predictor markers were investigated. Due to the heterogeneity of models and their statistical tests, a meta-analysis was not feasible.ConclusionES utility offers an effective ML potential and their applications in research have demonstrated a valid model for multi-variate analysis. The complexity of their development can challenge their uptake in urological clinics whilst the limitation of the statistical tools in this domain has created a gap for further research studies. Integration of computer scientists in academic units has promoted the use of ES in clinical urological research
    • …
    corecore