2,093 research outputs found

    Development of deterministic collision-avoidance algorithms for routing automated guided vehicles

    Get PDF
    A manufacturing job spends a small portion of its total flow time being processed on machines, and during the remaining time, either it is in a queue or being transported from one work center to another. In a fully automated material-handling environment, automated guided vehicles (AGV) perform the function of transporting the jobs between workstations, and high operational costs are involved in these material-handling activities. Consequently, the AGV route schedule dictates subsequent work-center scheduling. For an AGV job transportation schedule to be effective, the issue of collisions amongst AGV during travel needs to be addressed. Such collisions cause stalemate situations that potentially disrupt the flow of materials in the job shop, adding to the non-value time of job processing, and thus, increase the material handling and inventory holding costs. The current research goal was to develop a methodology that could effectively and efficiently derive optimal AGV routes for a given set of transportation requests, considering the issue of collisions amongst AGV during travel. As part of the solution approach in the proposed work, an integer linear program was formulated in Phase I with the capability of optimally predicting the AGV routes for a deterministic set of transportation requests. Collision avoidance constraints were developed in this model. The model was programmed using OPL / Visual Basic, and the program feasibility were experimentally analyzed for different problem domain specifications. Due to the complexity and combinatorial nature of the formulation in Phase I, computationally it was expected to be NP-Hard. Hence, to improve the computation prediction capability (estimation of upper bounds), it was required that in Phase II, heuristics be developed to relax the computational complexity of the original problem. In Phase III, experimental techniques were used to compute the lower and upper bounds of the original problem. The performances of the different heuristics were compared using experimental analysis

    A TOP-DOWN APPROACH FOR OPTIMALLY DESIGNING MULTISTAGE-ADAPTIVE TESTS

    Get PDF
    In multistage-adaptive testing (MST), there are many interrelated design variables that impact the nature and quality of ability estimation. Previous research has identified general principles for the effective design of MSTs in terms of measurement performance. However, those principles are unlikely to apply uniformly to every testing context. The purpose of this dissertation is to propose a process of finding an MST design that has optimal measurement properties, given a specific set of test circumstances. To achieve this goal, an efficient strategy was introduced at each of three phases to discover the optimal design of the MST; constructing MSTs, systematically searching a design space of the MST, and evaluating the MST performance. For the first phase, a top-down approach was applied in this study. For the second phase, a way to systematically search the parameterized design space of an MST was used. For the third phase, a new analytical evaluation method for MST was proposed. In the dissertation, Study 1 proposed a new analytical evaluation method for MST. Using this new approach, measurement precision of ability estimation and classification accuracy could be derived analytically. The simulation results indicated that the new analytical method produced more exact measurement properties of an MST than the Monte Carlo simulation method. Therefore, the new analytical method would be the most efficient and competitive tool to asses measurement performance of an MST among other evaluation methods. Study 2 proposed a process to find a design of an MST that shows optimal measurement properties applying the three efficient strategies, given a specific set of testing context. The process consists of four important features: (1) setting a testing circumstance and MST design space, (2) systematically searching the MST design space using the top-down approach, (3) analytically evaluating measurement performance of an MST, and (4) computing objective functions. The suggested process was applied to a real item pool from a large-scale assessment. The results of the application study provided evidence that the process could be generalized to more complex and realistic test circumstances to create optimal designs of MST

    An Information Value Approach to Route Planning for UAV Search and Track Missions

    Get PDF
    This dissertation has three contributions in the area of path planning for Unmanned Aerial Vehicle (UAV) Search And Track (SAT) missions. These contributions are: (a) the study of a novel metric, G, used to quantify the value of the target information gained during a search and track mission, (b) an optimal planning horizon that minimizes time-error of a planning horizon when interrupted by Poisson random events, and (c) a modified Particle Swarm Optimization (PSO) algorithm for search missions that uses the prior target distribution in the generation of paths rather than just in the evaluation of them. UAV route planning is an important topic with many applications. Of these, military applications are the best known. This dissertation focuses on route planning for SAT missions that jointly optimize the conflicting objectives of detecting new targets and monitoring previously detected targets. The information theoretic approach proposed here is different from and is superior to existing approaches. One of the main differences is that G quantifies the value of the target information rather than the information itself. Several examples are provided to highlight G’s desirable properties. Another important component of path planning is the selection of a planning horizon, which specifies the amount of time to include in a plan. Unfortunately, little research is available to aid in the selection of a planning horizon. The proposed planning horizon is derived in the context of plan updates triggered by Poisson random events. To our knowledge, it is the only theoretically derived horizon available making it an important contribution. While the proposed horizon is optimal in minimizing planning time errors, simulation results show that it is also near optimal in minimizing the average time needed to capture an evasive target. The final contribution is the modified PSO. Our modification is based on the idea that PSO should be provided with the target distribution for path generation. This allows the algorithm to create candidate path plans in target rich regions. The modified PSO is studied using a search mission and is used in the study of G

    Random Neural Networks and Optimisation

    Get PDF
    In this thesis we introduce new models and learning algorithms for the Random Neural Network (RNN), and we develop RNN-based and other approaches for the solution of emergency management optimisation problems. With respect to RNN developments, two novel supervised learning algorithms are proposed. The first, is a gradient descent algorithm for an RNN extension model that we have introduced, the RNN with synchronised interactions (RNNSI), which was inspired from the synchronised firing activity observed in brain neural circuits. The second algorithm is based on modelling the signal-flow equations in RNN as a nonnegative least squares (NNLS) problem. NNLS is solved using a limited-memory quasi-Newton algorithm specifically designed for the RNN case. Regarding the investigation of emergency management optimisation problems, we examine combinatorial assignment problems that require fast, distributed and close to optimal solution, under information uncertainty. We consider three different problems with the above characteristics associated with the assignment of emergency units to incidents with injured civilians (AEUI), the assignment of assets to tasks under execution uncertainty (ATAU), and the deployment of a robotic network to establish communication with trapped civilians (DRNCTC). AEUI is solved by training an RNN tool with instances of the optimisation problem and then using the trained RNN for decision making; training is achieved using the developed learning algorithms. For the solution of ATAU problem, we introduce two different approaches. The first is based on mapping parameters of the optimisation problem to RNN parameters, and the second on solving a sequence of minimum cost flow problems on appropriately constructed networks with estimated arc costs. For the exact solution of DRNCTC problem, we develop a mixed-integer linear programming formulation, which is based on network flows. Finally, we design and implement distributed heuristic algorithms for the deployment of robots when the civilian locations are known or uncertain

    Learn global and optimize local:A data-driven methodology for last-mile routing

    Get PDF
    In last-mile routing, the task of finding a route is often framed as a Traveling Salesman Problem to minimize travel time and associated cost. However, solutions stemming from this approach do not match the realized paths as drivers deviate due to navigational considerations and preferences. To prescribe routes that incorporate this tacit knowledge, a data-driven model is proposed that aligns well with the hierarchical structure of delivery data wherein each stop belongs to a zone — a geographical area. First, on the global level, a zone sequence is established as a result of a minimization over a cost matrix which is a weighted combination of historical information and distances (travel times) between zones. Subsequently, within zones, sequences of stops are determined, such that, integrated with the predetermined zone sequence, a full solution is obtained. The methodology is particularly promising as it propels itself within the top-tier of submissions to the Last-Mile Routing Research Challenge while maintaining an elegant decomposition that ensures a feasible implementation into practice. The concurrence between prescribed and realized routes underpins the adequateness of a hierarchical breakdown of the problem, and the fact that drivers make a series of locally optimal decisions when navigating. Furthermore, experimenting with the balance between historical information and distance exposes that historic information is pivotal in deciding a starting zone of a route. The experiments also reveal that at the end of a route, historical information can best be discarded, making the time it takes to return to the station the primary concern.</p

    Autonomous navigation for UAVs managing motion and sensing uncertainty

    Get PDF
    We present a motion planner for the autonomous navigation of UAVs that manages motion and sensing uncertainty at planning time. By doing so, optimal paths in terms of probability of collision, traversal time and uncertainty are obtained. Moreover, our approach takes into account the real dimensions of the UAV in order to reliably estimate the probability of collision from the predicted uncertainty. The motion planner relies on a graduated fidelity state lattice and a novel multi-resolution heuristic which adapt to the obstacles in the map. This allows managing the uncertainty at planning time and yet obtaining solutions fast enough to control the UAV in real time. Experimental results show the reliability and the efficiency of our approach in different real environments and with different motion models. Finally, we also report planning results for the reconstruction of 3D scenarios, showing that with our approach the UAV can obtain a precise 3D model autonomouslyThis research was funded by the Spanish Ministry for Science, Innovation, Spain and Universities (grant TIN2017-84796-C2-1-R) and the Galician Ministry of Education, University and Professional Training, Spain (grants ED431C 2018/29 and “accreditation 2016–2019, ED431G/08”). These grants were co-funded by the European Regional Development Fund (ERDF/FEDER program)S
    • …
    corecore