7 research outputs found

    Predicting respiratory motion for real-time tumour tracking in radiotherapy

    Full text link
    Purpose. Radiation therapy is a local treatment aimed at cells in and around a tumor. The goal of this study is to develop an algorithmic solution for predicting the position of a target in 3D in real time, aiming for the short fixed calibration time for each patient at the beginning of the procedure. Accurate predictions of lung tumor motion are expected to improve the precision of radiation treatment by controlling the position of a couch or a beam in order to compensate for respiratory motion during radiation treatment. Methods. For developing the algorithmic solution, data mining techniques are used. A model form from the family of exponential smoothing is assumed, and the model parameters are fitted by minimizing the absolute disposition error, and the fluctuations of the prediction signal (jitter). The predictive performance is evaluated retrospectively on clinical datasets capturing different behavior (being quiet, talking, laughing), and validated in real-time on a prototype system with respiratory motion imitation. Results. An algorithmic solution for respiratory motion prediction (called ExSmi) is designed. ExSmi achieves good accuracy of prediction (error 4−94-9 mm/s) with acceptable jitter values (5-7 mm/s), as tested on out-of-sample data. The datasets, the code for algorithms and the experiments are openly available for research purposes on a dedicated website. Conclusions. The developed algorithmic solution performs well to be prototyped and deployed in applications of radiotherapy

    PREDICTION OF RESPIRATORY MOTION

    Get PDF
    Radiation therapy is a cancer treatment method that employs high-energy radiation beams to destroy cancer cells by damaging the ability of these cells to reproduce. Thoracic and abdominal tumors may change their positions during respiration by as much as three centimeters during radiation treatment. The prediction of respiratory motion has become an important research area because respiratory motion severely affects precise radiation dose delivery. This study describes recent radiotherapy technologies including tools for measuring target position during radiotherapy and tracking-based delivery systems. In the first part of our study we review three prediction approaches of respiratory motion, i.e., model-based methods, model-free heuristic learning algorithms, and hybrid methods. In the second part of our work we propose respiratory motion estimation with hybrid implementation of extended Kalman filter. The proposed method uses the recurrent neural network as the role of the predictor and the extended Kalman filter as the role of the corrector. In the third part of our work we further extend our research work to present customized prediction of respiratory motion with clustering from multiple patient interactions. For the customized prediction we construct the clustering based on breathing patterns of multiple patients using the feature selection metrics that are composed of a variety of breathing features. In the fourth part of our work we retrospectively categorize breathing data into several classes and propose a new approach to detect irregular breathing patterns using neural networks. We have evaluated the proposed new algorithm by comparing the prediction overshoot and the tracking estimation value. The experimental results of 448 patients’ breathing patterns validated the proposed irregular breathing classifier

    ContrÎle en temps réel de la précision du suivi indirect de tumeurs mobiles en radiothérapie

    Full text link
    Le but de la radiothĂ©rapie est d’irradier les cellules cancĂ©reuses tout en prĂ©servant au maximum les tissus sains environnants. Or, dans le cas du cancer du poumon, la respiration du patient engendre des mouvements de la tumeur pendant le traitement. Une solution possible est de repositionner continuellement le faisceau d’irradiation sur la cible tumorale en mouvement. L’e cacitĂ© et la sĂ»retĂ© de cette approche reposent sur la localisation prĂ©cise en temps rĂ©el de la tumeur. Le suivi indirect consiste Ă  infĂ©rer la position de la cible tumorale Ă  partir de l’observation d’un signal substitut, visible en continu sans nĂ©cessiter de rayonnement ionisant. Un modĂšle de corrĂ©lation spatial doit donc ĂȘtre Ă©tabli. Par ailleurs, pour compenser la latence du systĂšme, l’algorithme de suivi doit pouvoir Ă©galement anticiper la position future de la cible. Parce que la respiration du patient varie dans le temps, les modĂšles de prĂ©diction et de corrĂ©lation peuvent devenir imprĂ©cis. La prĂ©diction de la position de la tumeur devrait alors idĂ©alement ĂȘtre complĂ©tĂ©e par l’estimation des incertitudes associĂ©es aux prĂ©dictions. Dans la pratique clinique actuelle, ces incertitudes de positionnement en temps rĂ©el ne sont pas explicitement prĂ©dites. Cette thĂšse de doctorat s’intĂ©resse au contrĂŽle en temps rĂ©el de la prĂ©cision du suivi indirect de tumeurs mobiles en radiothĂ©rapie. Dans un premier temps, une mĂ©thode bayĂ©sienne pour le suivi indirect en radiothĂ©rapie est dĂ©veloppĂ©e. Cette approche, basĂ©e sur le filtre de Kalman, permet de prĂ©dire non seulement la position future de la tumeur Ă  partir d’un signal substitut, mais aussi les incertitudes associĂ©es. Ce travail o re une premiĂšre preuve de concept, et montre Ă©galement le potentiel du foie comme substitut interne, qui apparait plus robuste et fiable que les marqueurs externes communĂ©ment utilisĂ©s dans la pratique clinique. Dans un deuxiĂšme temps, une adaptation de la mĂ©thode est proposĂ©e afin d’amĂ©liorer sa robustesse face aux changements de respiration. Cette innovation permet de prĂ©dire des rĂ©gions de confiance adaptatives, capables de dĂ©tecter les erreurs de prĂ©diction Ă©levĂ©es, en se basant exclusivement sur l’observation du signal substitut. Les rĂ©sultats rĂ©vĂšlent qu’à sensibilitĂ© Ă©levĂ©e (90%), une spĂ©cificitĂ© d’environ 50% est obtenue. Un processus de validation innovant basĂ© sur ces rĂ©gions de confiance adaptatives est ensuite Ă©valuĂ© et comparĂ© au processus conventionnel qui consiste en des mesures de la cible Ă  intervalles de temps fixes et prĂ©dĂ©terminĂ©s. Une version adaptative de la mĂ©thode bayĂ©sienne est donc dĂ©veloppĂ©e afin d’intĂ©grer des mesures occasionnelles de la position de la cible. Les rĂ©sultats confirment que les incertitudes prĂ©dites par la mĂ©thode bayĂ©sienne permettent de dĂ©tecter les erreurs de prĂ©dictions Ă©levĂ©es, et dĂ©montrent que le processus de validation basĂ© sur ces incertitudes a le potentiel d’ĂȘtre plus e cace que les validations rĂ©guliĂšres. Ces approches bayĂ©siennes sont validĂ©es sur des sĂ©quences respiratoires de volontaires, acquises par imagerie par rĂ©sonance magnĂ©tique (IRM) dynamique et interpolĂ©es Ă  haute frĂ©quence. Afin de complĂ©ter l’évaluation de la mĂ©thode bayĂ©sienne pour le suivi indirect, une validation expĂ©rimentale prĂ©liminaire est conduite sur des donnĂ©es cliniques de patients atteints de cancer du poumon. Les travaux de ce projet doctoral promettent une amĂ©lioration du contrĂŽle en temps rĂ©el de la prĂ©cision des prĂ©dictions lors des traitements de radiothĂ©rapie. Finalement, puisque l’imagerie ultrasonore pourrait ĂȘtre employĂ©e pour visualiser les substituts internes, une Ă©tude prĂ©liminaire sur l’évaluation automatique de la qualitĂ© des images ultrasonores est prĂ©sentĂ©e. Ces rĂ©sultats pourront ĂȘtre utilisĂ©s ultĂ©rieurement pour le suivi indirect en radiothĂ©rapie en vue d’optimiser les acquisitions ultrasonores pendant les traitements et faciliter l’extraction automatique du mouvement du substitut.The goal of radiotherapy is to irradiate cancer cells while maintaining a low dose of radiation to the surrounding healthy tissue. In the case of lung cancer, the patient’s breathing causes the tumor to move during treatment. One possible solution is to continuously reposition the irradiation beam on the moving target. The e ectiveness and safety of this approach rely on accurate real-time localization of the tumor. Indirect strategies derive the target positions from a correlation model with a surrogate signal, which is continuously monitored without the need for radiation-based imaging. In addition, to compensate for system latency, the tracking algorithm must also be able to anticipate the future position of the target. Because the patient’s breathing varies over time, prediction and correlation models can become inaccurate. Ideally, the prediction of the tumor location would also include an estimation of the uncertainty associated with the prediction. However, in current clinical practice, these real-time positioning uncertainties are not explicitly predicted. This doctoral thesis focuses on real-time control of the accuracy of indirect tracking of mobile tumors in radiotherapy. First, a Bayesian method is developed. This approach, based on Kalman filter theory, allows predicting both future target motion in real-time from a surrogate signal and associated uncertainty. This work o ers a first proof of concept, and also shows the potential of the liver as an internal substitute as it appears more robust and reliable than the external markers commonly used in clinical practice. Second, an adaptation of the method is proposed to improve its robustness against changes in breathing. This innovation enables the prediction of adaptive confidence regions that can be used to detect significant prediction errors, based exclusively on the observation of the surrogate signal. The results show that at high sensitivity (90%), a specificity of about 50% is obtained. A new validation process based on these adaptive confidence regions is then evaluated and compared to the conventional validation process (i.e., target measurements at fixed and predetermined time intervals). An adaptive version of the Bayesian method is therefore developed to valuably incorporate occasional measurements of the target position. The results confirm that the uncertainties predicted by the Bayesian method can detect high prediction errors, and demonstrate that the validation process based on these uncertainties has the potential to be more e cient and e ective than regular validations. For these studies, the proposed Bayesian methods are validated on respiratory sequences of volunteers, acquired by dynamic MRI and interpolated at high frequency. In order to complete the evaluation of the Bayesian method for indirect tracking, experimental validation is conducted on clinical data of patients with lung cancer. The work of this doctoral project promises to improve the real-time control of the accuracy of predictions during radiotherapy treatments. Finally, since ultrasound imaging could be used to visualize internal surrogates, a preliminary study on automatic ultrasound image quality assessment is presented. These results can later be used for indirect tracking in radiotherapy to optimize ultrasound acquisitions during treatments and facilitate the automatic estimation of surrogate motion

    Ein Steuersystem fĂŒr die telemanipulierte und autonome robotergestĂŒtzte Chirurgie

    Get PDF
    Die Arbeit entwickelt ein komplettes System fĂŒr die telemanipulierte und autonome robotergestĂŒtzte Chirurgie. Beschrieben werden die hierfĂŒr notwendigen Komponenten: Softwarearchitektur, Entwicklungsumgebung, Planung mit Validierung und Verifizierung, Einbindung der Sensordaten, Bahnplanung, Steuerung und Regelung der Aktorik. Die FunktionsfĂ€higkeit des Systems wird anhand zweier Operationen gezeigt (Abdominalen Aortenaneurysma (AAA), Laserknochenschneiden mit einem CO2 Laser)

    Network-driven strategies to integrate and exploit biomedical data

    Get PDF
    [eng] In the quest for understanding complex biological systems, the scientific community has been delving into protein, chemical and disease biology, populating biomedical databases with a wealth of data and knowledge. Currently, the field of biomedicine has entered a Big Data era, in which computational-driven research can largely benefit from existing knowledge to better understand and characterize biological and chemical entities. And yet, the heterogeneity and complexity of biomedical data trigger the need for a proper integration and representation of this knowledge, so that it can be effectively and efficiently exploited. In this thesis, we aim at developing new strategies to leverage the current biomedical knowledge, so that meaningful information can be extracted and fused into downstream applications. To this goal, we have capitalized on network analysis algorithms to integrate and exploit biomedical data in a wide variety of scenarios, providing a better understanding of pharmacoomics experiments while helping accelerate the drug discovery process. More specifically, we have (i) devised an approach to identify functional gene sets associated with drug response mechanisms of action, (ii) created a resource of biomedical descriptors able to anticipate cellular drug response and identify new drug repurposing opportunities, (iii) designed a tool to annotate biomedical support for a given set of experimental observations, and (iv) reviewed different chemical and biological descriptors relevant for drug discovery, illustrating how they can be used to provide solutions to current challenges in biomedicine.[cat] En la cerca d’una millor comprensiĂł dels sistemes biolĂČgics complexos, la comunitat cientĂ­fica ha estat aprofundint en la biologia de les proteĂŻnes, fĂ rmacs i malalties, poblant les bases de dades biomĂšdiques amb un gran volum de dades i coneixement. En l’actualitat, el camp de la biomedicina es troba en una era de “dades massives” (Big Data), on la investigaciĂł duta a terme per ordinadors se’n pot beneficiar per entendre i caracteritzar millor les entitats quĂ­miques i biolĂČgiques. No obstant, la heterogeneĂŻtat i complexitat de les dades biomĂšdiques requereix que aquestes s’integrin i es representin d’una manera idĂČnia, permetent aixĂ­ explotar aquesta informaciĂł d’una manera efectiva i eficient. L’objectiu d’aquesta tesis doctoral Ă©s desenvolupar noves estratĂšgies que permetin explotar el coneixement biomĂšdic actual i aixĂ­ extreure informaciĂł rellevant per aplicacions biomĂšdiques futures. Per aquesta finalitat, em fet servir algoritmes de xarxes per tal d’integrar i explotar el coneixement biomĂšdic en diferents tasques, proporcionant un millor enteniment dels experiments farmacoĂČmics per tal d’ajudar accelerar el procĂ©s de descobriment de nous fĂ rmacs. Com a resultat, en aquesta tesi hem (i) dissenyat una estratĂšgia per identificar grups funcionals de gens associats a la resposta de lĂ­nies cel·lulars als fĂ rmacs, (ii) creat una col·lecciĂł de descriptors biomĂšdics capaços, entre altres coses, d’anticipar com les cĂšl·lules responen als fĂ rmacs o trobar nous usos per fĂ rmacs existents, (iii) desenvolupat una eina per descobrir quins contextos biolĂČgics corresponen a una associaciĂł biolĂČgica observada experimentalment i, finalment, (iv) hem explorat diferents descriptors quĂ­mics i biolĂČgics rellevants pel procĂ©s de descobriment de nous fĂ rmacs, mostrant com aquests poden ser utilitzats per trobar solucions a reptes actuals dins el camp de la biomedicina
    corecore