1,488 research outputs found

    Predicting protein thermostability changes from sequence upon multiple mutations

    Get PDF
    Motivation: A basic question in protein science is to which extent mutations affect protein thermostability. This knowledge would be particularly relevant for engineering thermostable enzymes. In several experimental approaches, this issue has been serendipitously addressed. It would be therefore convenient providing a computational method that predicts when a given protein mutant is more thermostable than its corresponding wild-type

    Machine learning-guided directed evolution for protein engineering

    Get PDF
    Machine learning (ML)-guided directed evolution is a new paradigm for biological design that enables optimization of complex functions. ML methods use data to predict how sequence maps to function without requiring a detailed model of the underlying physics or biological pathways. To demonstrate ML-guided directed evolution, we introduce the steps required to build ML sequence-function models and use them to guide engineering, making recommendations at each stage. This review covers basic concepts relevant to using ML for protein engineering as well as the current literature and applications of this new engineering paradigm. ML methods accelerate directed evolution by learning from information contained in all measured variants and using that information to select sequences that are likely to be improved. We then provide two case studies that demonstrate the ML-guided directed evolution process. We also look to future opportunities where ML will enable discovery of new protein functions and uncover the relationship between protein sequence and function.Comment: Made significant revisions to focus on aspects most relevant to applying machine learning to speed up directed evolutio

    PROTS-RF: A Robust Model for Predicting Mutation-Induced Protein Stability Changes

    Get PDF
    The ability to improve protein thermostability via protein engineering is of great scientific interest and also has significant practical value. In this report we present PROTS-RF, a robust model based on the Random Forest algorithm capable of predicting thermostability changes induced by not only single-, but also double- or multiple-point mutations. The model is built using 41 features including evolutionary information, secondary structure, solvent accessibility and a set of fragment-based features. It achieves accuracies of 0.799,0.782, 0.787, and areas under receiver operating characteristic (ROC) curves of 0.873, 0.868 and 0.862 for single-, double- and multiple- point mutation datasets, respectively. Contrary to previous suggestions, our results clearly demonstrate that a robust predictive model trained for predicting single point mutation induced thermostability changes can be capable of predicting double and multiple point mutations. It also shows high levels of robustness in the tests using hypothetical reverse mutations. We demonstrate that testing datasets created based on physical principles can be highly useful for testing the robustness of predictive models

    Predicting changes in protein thermostability brought about by single- or multi-site mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An important aspect of protein design is the ability to predict changes in protein thermostability arising from single- or multi-site mutations. Protein thermostability is reflected in the change in free energy (ΔΔ<it>G</it>) of thermal denaturation.</p> <p>Results</p> <p>We have developed predictive software, Prethermut, based on machine learning methods, to predict the effect of single- or multi-site mutations on protein thermostability. The input vector of Prethermut is based on known structural changes and empirical measurements of changes in potential energy due to protein mutations. Using a 10-fold cross validation test on the M-dataset, consisting of 3366 mutants proteins from ProTherm, the classification accuracy of random forests and the regression accuracy of random forest regression were slightly better than support vector machines and support vector regression, whereas the overall accuracy of classification and the Pearson correlation coefficient of regression were 79.2% and 0.72, respectively. Prethermut performs better on proteins containing multi-site mutations than those with single mutations.</p> <p>Conclusions</p> <p>The performance of Prethermut indicates that it is a useful tool for predicting changes in protein thermostability brought about by single- or multi-site mutations and will be valuable in the rational design of proteins.</p

    Prots: A fragment based protein thermo‐stability potential

    Get PDF
    Designing proteins with enhanced thermo‐stability has been a main focus of protein engineering because of its theoretical and practical significance. Despite extensive studies in the past years, a general strategy for stabilizing proteins still remains elusive. Thus effective and robust computational algorithms for designing thermo‐stable proteins are in critical demand. Here we report PROTS, a sequential and structural four‐residue fragment based protein thermo‐stability potential. PROTS is derived from a nonredundant representative collection of thousands of thermophilic and mesophilic protein structures and a large set of point mutations with experimentally determined changes of melting temperatures. To the best of our knowledge, PROTS is the first protein stability predictor based on integrated analysis and mining of these two types of data. Besides conventional cross validation and blind testing, we introduce hypothetical reverse mutations as a means of testing the robustness of protein thermo‐stability predictors. In all tests, PROTS demonstrates the ability to reliably predict mutation induced thermo‐stability changes as well as classify thermophilic and mesophilic proteins. In addition, this white‐box predictor allows easy interpretation of the factors that influence mutation induced protein stability changes at the residue level. Proteins 2012; © 2011 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/89526/1/23163_ftp.pd

    Predicting a Protein's Stability under a Million Mutations

    Full text link
    Stabilizing proteins is a foundational step in protein engineering. However, the evolutionary pressure of all extant proteins makes identifying the scarce number of mutations that will improve thermodynamic stability challenging. Deep learning has recently emerged as a powerful tool for identifying promising mutations. Existing approaches, however, are computationally expensive, as the number of model inferences scales with the number of mutations queried. Our main contribution is a simple, parallel decoding algorithm. Our Mutate Everything is capable of predicting the effect of all single and double mutations in one forward pass. It is even versatile enough to predict higher-order mutations with minimal computational overhead. We build Mutate Everything on top of ESM2 and AlphaFold, neither of which were trained to predict thermodynamic stability. We trained on the Mega-Scale cDNA proteolysis dataset and achieved state-of-the-art performance on single and higher-order mutations on S669, ProTherm, and ProteinGym datasets. Code is available at https://github.com/jozhang97/MutateEverythingComment: NeurIPS 2023. Code available at https://github.com/jozhang97/MutateEverythin

    A novel scoring function for discriminating hyperthermophilic and mesophilic proteins with application to predicting relative thermostability of protein mutants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to design thermostable proteins is theoretically important and practically useful. Robust and accurate algorithms, however, remain elusive. One critical problem is the lack of reliable methods to estimate the relative thermostability of possible mutants.</p> <p>Results</p> <p>We report a novel scoring function for discriminating hyperthermophilic and mesophilic proteins with application to predicting the relative thermostability of protein mutants. The scoring function was developed based on an elaborate analysis of a set of features calculated or predicted from 540 pairs of hyperthermophilic and mesophilic protein ortholog sequences. It was constructed by a linear combination of ten important features identified by a feature ranking procedure based on the random forest classification algorithm. The weights of these features in the scoring function were fitted by a hill-climbing algorithm. This scoring function has shown an excellent ability to discriminate hyperthermophilic from mesophilic sequences. The prediction accuracies reached 98.9% and 97.3% in discriminating orthologous pairs in training and the holdout testing datasets, respectively. Moreover, the scoring function can distinguish non-homologous sequences with an accuracy of 88.4%. Additional blind tests using two datasets of experimentally investigated mutations demonstrated that the scoring function can be used to predict the relative thermostability of proteins and their mutants at very high accuracies (92.9% and 94.4%). We also developed an amino acid substitution preference matrix between mesophilic and hyperthermophilic proteins, which may be useful in designing more thermostable proteins.</p> <p>Conclusions</p> <p>We have presented a novel scoring function which can distinguish not only HP/MP ortholog pairs, but also non-homologous pairs at high accuracies. Most importantly, it can be used to accurately predict the relative stability of proteins and their mutants, as demonstrated in two blind tests. In addition, the residue substitution preference matrix assembled in this study may reflect the thermal adaptation induced substitution biases. A web server implementing the scoring function and the dataset used in this study are freely available at <url>http://www.abl.ku.edu/thermorank/</url>.</p
    corecore