30,245 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    PaperRobot: Incremental Draft Generation of Scientific Ideas

    Full text link
    We present a PaperRobot who performs as an automatic research assistant by (1) conducting deep understanding of a large collection of human-written papers in a target domain and constructing comprehensive background knowledge graphs (KGs); (2) creating new ideas by predicting links from the background KGs, by combining graph attention and contextual text attention; (3) incrementally writing some key elements of a new paper based on memory-attention networks: from the input title along with predicted related entities to generate a paper abstract, from the abstract to generate conclusion and future work, and finally from future work to generate a title for a follow-on paper. Turing Tests, where a biomedical domain expert is asked to compare a system output and a human-authored string, show PaperRobot generated abstracts, conclusion and future work sections, and new titles are chosen over human-written ones up to 30%, 24% and 12% of the time, respectively.Comment: 12 pages. Accepted by ACL 2019 Code and resource is available at https://github.com/EagleW/PaperRobo

    Large-scale automated protein function prediction

    Get PDF
    Includes bibliographical references.2016 Summer.Proteins are the workhorses of life, and identifying their functions is a very important biological problem. The function of a protein can be loosely defined as everything it performs or happens to it. The Gene Ontology (GO) is a structured vocabulary which captures protein function in a hierarchical manner and contains thousands of terms. Through various wet-lab experiments over the years scientists have been able to annotate a large number of proteins with GO categories which reflect their functionality. However, experimentally determining protein functions is a highly resource-intensive task, and a large fraction of proteins remain un-annotated. Recently a plethora automated methods have emerged and their reasonable success in computationally determining the functions of proteins using a variety of data sources – by sequence/structure similarity or using various biological network data, has led to establishing automated function prediction (AFP) as an important problem in bioinformatics. In a typical machine learning problem, cross-validation is the protocol of choice for evaluating the accuracy of a classifier. But, due to the process of accumulation of annotations over time, we identify the AFP as a combination of two sub-tasks: making predictions on annotated proteins and making predictions on previously unannotated proteins. In our first project, we analyze the performance of several protein function prediction methods in these two scenarios. Our results show that GOstruct, an AFP method that our lab has previously developed, and two other popular methods: binary SVMs and guilt by association, find it hard to achieve the same level of accuracy on these two tasks compared to the performance evaluated through cross-validation, and that predicting novel annotations for previously annotated proteins is a harder problem than predicting annotations for uncharacterized proteins. We develop GOstruct 2.0 by proposing improvements which allows the model to make use of information of a protein's current annotations to better handle the task of predicting novel annotations for previously annotated proteins. Experimental results on yeast and human data show that GOstruct 2.0 outperforms the original GOstruct, demonstrating the effectiveness of the proposed improvements. Although the biomedical literature is a very informative resource for identifying protein function, most AFP methods do not take advantage of the large amount of information contained in it. In our second project, we conduct the first ever comprehensive evaluation on the effectiveness of literature data for AFP. Specifically, we extract co-mentions of protein-GO term pairs and bag-of-words features from the literature and explore their effectiveness in predicting protein function. Our results show that literature features are very informative of protein function but with further room for improvement. In order to improve the quality of automatically extracted co-mentions, we formulate the classification of co-mentions as a supervised learning problem and propose a novel method based on graph kernels. Experimental results indicate the feasibility of using this co-mention classifier as a complementary method that aids the bio-curators who are responsible for maintaining databases such as Gene Ontology. This is the first study of the problem of protein-function relation extraction from biomedical text. The recently developed human phenotype ontology (HPO), which is very similar to GO, is a standardized vocabulary for describing the phenotype abnormalities associated with human diseases. At present, only a small fraction of human protein coding genes have HPO annotations. But, researchers believe that a large portion of currently unannotated genes are related to disease phenotypes. Therefore, it is important to predict gene-HPO term associations using accurate computational methods. In our third project, we introduce PHENOstruct, a computational method that directly predicts the set of HPO terms for a given gene. We compare PHENOstruct with several baseline methods and show that it outperforms them in every respect. Furthermore, we highlight a collection of informative data sources suitable for the problem of predicting gene-HPO associations, including large scale literature mining data

    Improving dbNSFP

    Get PDF
    IMPROVING dbNSFP Mingyao Lu, B.S. Advisory Professor: Xiaoming Liu, Ph.D. The analysis and interpretation of DNA variation are very important for the Whole Exome studies (WES). Genome research has focused on single nucleotide variants (SNVs). Since indels are as important as SNVs, especially indels in coding regions are often candidates of disease-causing variants, thus, it is necessary to expand the focus to include indel mutations. The goal of my project is to provide an automatic annotation pipeline to the WES based disease studies project by extending the dbNSFP with a tool for automated indel annotation and deleteriousness prediction. The current sequencing results typically include both SNVs and indels. Although there have been many available tools to integrate functional prediction/annotations for SNV effects, there are no such tools for indels to my knowledge. Therefore, the aim of this thesis was to add deleteriousness prediction scores to indel annotation based on gene models, including CADD, SIFT, and PROVEAN. All those scores can be calculated on-the-fly after installing resources locally. A Docker implementing the indel annotation and deleteriousness prediction has been developed and ready to be deployed from the cloud
    • …
    corecore