36 research outputs found

    Laplacian paths in complex networks: Information core emerges from entropic transitions

    Get PDF
    Complex networks usually exhibit a rich architecture organized over multiple intertwined scales. Information pathways are expected to pervade these scales reflecting structural insights that are not manifest from analyses of the network topology. Moreover, small-world effects correlate with the different network hierarchies complicating the identification of coexisting mesoscopic structures and functional cores.We present a communicability analysis of effective information pathways throughout complex networks based on information diffusion to shed further light on these issues. We employ a variety of brand-new theoretical techniques allowing for: (i) bring the theoretical framework to quantify the probability of information diffusion among nodes, (ii) identify critical scales and structures of complex networks regardless of their intrinsic properties, and (iii) demonstrate their dynamical relevance in synchronization phenomena. By combining these ideas, we evidence how the information flow on complex networks unravels different resolution scales. Using computational techniques, we focus on entropic transitions, uncovering a generic mesoscale object, the information core, and controlling information processing in complex networks. Altogether, this study sheds much light on allowing new theoretical techniques paving the way to introduce future renormalization group approaches based on diffusion distances

    A Network Science perspective of Graph Convolutional Networks: A survey

    Full text link
    The mining and exploitation of graph structural information have been the focal points in the study of complex networks. Traditional structural measures in Network Science focus on the analysis and modelling of complex networks from the perspective of network structure, such as the centrality measures, the clustering coefficient, and motifs and graphlets, and they have become basic tools for studying and understanding graphs. In comparison, graph neural networks, especially graph convolutional networks (GCNs), are particularly effective at integrating node features into graph structures via neighbourhood aggregation and message passing, and have been shown to significantly improve the performances in a variety of learning tasks. These two classes of methods are, however, typically treated separately with limited references to each other. In this work, aiming to establish relationships between them, we provide a network science perspective of GCNs. Our novel taxonomy classifies GCNs from three structural information angles, i.e., the layer-wise message aggregation scope, the message content, and the overall learning scope. Moreover, as a prerequisite for reviewing GCNs via a network science perspective, we also summarise traditional structural measures and propose a new taxonomy for them. Finally and most importantly, we draw connections between traditional structural approaches and graph convolutional networks, and discuss potential directions for future research
    corecore