120 research outputs found

    Adaptive evolution in static and dynamic environments

    Get PDF
    This thesis provides a framework for describing a canonical evolutionary system. Populations of individuals are envisaged as traversing a search space structured by genetic and developmental operators under the influence of selection. Selection acts on individuals' phenotypic expressions, guiding the population over an evaluation landscape, which describes an idealised evaluation surface over the phenotypic space. The corresponding valuation landscape describes evaluations over the genotypic space and may be transformed by within generation adaptive (learning) or maladaptive (fault induction) local search. Populations subjected to particular genetic and selection operators are claimed to evolve towards a region of the valuation landscape with a characteristic local ruggedness, as given by the runtime operator correlation coefficient. This corresponds to the view of evolution discovering an evolutionarily stable population, or quasi-species, held in a state of dynamic equilibrium by the operator set and evaluation function. This is demonstrated by genetic algorithm experiments using the NK landscapes and a novel, evolvable evaluation function, The Tower of Babel. In fluctuating environments of varying temporal ruggedness, different operator sets are correspondingly more or less adapted. Quantitative genetics analyses of populations in sinusoidally fluctuating conditions are shown to describe certain well known electronic filters. This observation suggests the notion of Evolutionary Signal Processing. Genetic algorithm experiments in which a population tracks a sinusoidally fluctuating optimum support this view. Using a self-adaptive mutation rate, it is possible to tune the evolutionary filter to the environmental frequency. For a time varying frequency, the mutation rate reacts accordingly. With local search, the valuation landscape is transformed through temporal smoothing. By coevolving modifier genes for individual learning and the rate at which the benefits may be directly transmitted to the next generation, the relative adaptedness of individual learning and cultural inheritance according to the rate of environmental change is demonstrated

    Understanding Language Evolution in Overlapping Generations of Reinforcement Learning Agents

    Get PDF

    "Shit Happens":The Spontaneous Self-Organisation of Communal Boundary Latrines via Stigmergy in a Null Model of the European Badger, Meles meles

    Get PDF

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Task Allocation in Foraging Robot Swarms:The Role of Information Sharing

    Get PDF
    Autonomous task allocation is a desirable feature of robot swarms that collect and deliver items in scenarios where congestion, caused by accumulated items or robots, can temporarily interfere with swarm behaviour. In such settings, self-regulation of workforce can prevent unnecessary energy consumption. We explore two types of self-regulation: non-social, where robots become idle upon experiencing congestion, and social, where robots broadcast information about congestion to their team mates in order to socially inhibit foraging. We show that while both types of self-regulation can lead to improved energy efficiency and increase the amount of resource collected, the speed with which information about congestion flows through a swarm affects the scalability of these algorithms

    Space-Time Continuous Models of Swarm Robotic Systems: Supporting Global-to-Local Programming

    Get PDF
    A generic model in as far as possible mathematical closed-form was developed that predicts the behavior of large self-organizing robot groups (robot swarms) based on their control algorithm. In addition, an extensive subsumption of the relatively young and distinctive interdisciplinary research field of swarm robotics is emphasized. The connection to many related fields is highlighted and the concepts and methods borrowed from these fields are described shortly

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance
    • 

    corecore