411 research outputs found

    An autoencoder-based reduced-order model for eigenvalue problems with application to neutron diffusion

    Full text link
    Using an autoencoder for dimensionality reduction, this paper presents a novel projection-based reduced-order model for eigenvalue problems. Reduced-order modelling relies on finding suitable basis functions which define a low-dimensional space in which a high-dimensional system is approximated. Proper orthogonal decomposition (POD) and singular value decomposition (SVD) are often used for this purpose and yield an optimal linear subspace. Autoencoders provide a nonlinear alternative to POD/SVD, that may capture, more efficiently, features or patterns in the high-fidelity model results. Reduced-order models based on an autoencoder and a novel hybrid SVD-autoencoder are developed. These methods are compared with the standard POD-Galerkin approach and are applied to two test cases taken from the field of nuclear reactor physics.Comment: 35 pages, 33 figure

    Complexity, Emergent Systems and Complex Biological Systems:\ud Complex Systems Theory and Biodynamics. [Edited book by I.C. Baianu, with listed contributors (2011)]

    Get PDF
    An overview is presented of System dynamics, the study of the behaviour of complex systems, Dynamical system in mathematics Dynamic programming in computer science and control theory, Complex systems biology, Neurodynamics and Psychodynamics.\u

    Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems

    Full text link
    Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of natural phenomena at a wide range of spatial and temporal scales, giving rise to a new area of research known as AI for science (AI4Science). Being an emerging research paradigm, AI4Science is unique in that it is an enormous and highly interdisciplinary area. Thus, a unified and technical treatment of this field is needed yet challenging. This work aims to provide a technically thorough account of a subarea of AI4Science; namely, AI for quantum, atomistic, and continuum systems. These areas aim at understanding the physical world from the subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales and form an important subarea of AI4Science. A unique advantage of focusing on these areas is that they largely share a common set of challenges, thereby allowing a unified and foundational treatment. A key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods. We provide an in-depth yet intuitive account of techniques to achieve equivariance to symmetry transformations. We also discuss other common technical challenges, including explainability, out-of-distribution generalization, knowledge transfer with foundation and large language models, and uncertainty quantification. To facilitate learning and education, we provide categorized lists of resources that we found to be useful. We strive to be thorough and unified and hope this initial effort may trigger more community interests and efforts to further advance AI4Science

    ISCR annual report FY 1998

    Full text link

    Synergies between Numerical Methods for Kinetic Equations and Neural Networks

    Get PDF
    The overarching theme of this work is the efficient computation of large-scale systems. Here we deal with two types of mathematical challenges, which are quite different at first glance but offer similar opportunities and challenges upon closer examination. Physical descriptions of phenomena and their mathematical modeling are performed on diverse scales, ranging from nano-scale interactions of single atoms to the macroscopic dynamics of the earth\u27s atmosphere. We consider such systems of interacting particles and explore methods to simulate them efficiently and accurately, with a focus on the kinetic and macroscopic description of interacting particle systems. Macroscopic governing equations describe the time evolution of a system in time and space, whereas the more fine-grained kinetic description additionally takes the particle velocity into account. The study of discretizing kinetic equations that depend on space, time, and velocity variables is a challenge due to the need to preserve physical solution bounds, e.g. positivity, avoiding spurious artifacts and computational efficiency. In the pursuit of overcoming the challenge of computability in both kinetic and multi-scale modeling, a wide variety of approximative methods have been established in the realm of reduced order and surrogate modeling, and model compression. For kinetic models, this may manifest in hybrid numerical solvers, that switch between macroscopic and mesoscopic simulation, asymptotic preserving schemes, that bridge the gap between both physical resolution levels, or surrogate models that operate on a kinetic level but replace computationally heavy operations of the simulation by fast approximations. Thus, for the simulation of kinetic and multi-scale systems with a high spatial resolution and long temporal horizon, the quote by Paul Dirac is as relevant as it was almost a century ago. The first goal of the dissertation is therefore the development of acceleration strategies for kinetic discretization methods, that preserve the structure of their governing equations. Particularly, we investigate the use of convex neural networks, to accelerate the minimal entropy closure method. Further, we develop a neural network-based hybrid solver for multi-scale systems, where kinetic and macroscopic methods are chosen based on local flow conditions. Furthermore, we deal with the compression and efficient computation of neural networks. In the meantime, neural networks are successfully used in different forms in countless scientific works and technical systems, with well-known applications in image recognition, and computer-aided language translation, but also as surrogate models for numerical mathematics. Although the first neural networks were already presented in the 1950s, the scientific discipline has enjoyed increasing popularity mainly during the last 15 years, since only now sufficient computing capacity is available. Remarkably, the increasing availability of computing resources is accompanied by a hunger for larger models, fueled by the common conception of machine learning practitioners and researchers that more trainable parameters equal higher performance and better generalization capabilities. The increase in model size exceeds the growth of available computing resources by orders of magnitude. Since 20122012, the computational resources used in the largest neural network models doubled every 3.43.4 months\footnote{\url{https://openai.com/blog/ai-and-compute/}}, opposed to Moore\u27s Law that proposes a 22-year doubling period in available computing power. To some extent, Dirac\u27s statement also applies to the recent computational challenges in the machine-learning community. The desire to evaluate and train on resource-limited devices sparked interest in model compression, where neural networks are sparsified or factorized, typically after training. The second goal of this dissertation is thus a low-rank method, originating from numerical methods for kinetic equations, to compress neural networks already during training by low-rank factorization. This dissertation thus considers synergies between kinetic models, neural networks, and numerical methods in both disciplines to develop time-, memory- and energy-efficient computational methods for both research areas

    Enabling Automated, Reliable and Efficient Aerodynamic Shape Optimization With Output-Based Adapted Meshes

    Full text link
    Simulation-based aerodynamic shape optimization has been greatly pushed forward during the past several decades, largely due to the developments of computational fluid dynamics (CFD), geometry parameterization methods, mesh deformation techniques, sensitivity computation, and numerical optimization algorithms. Effective integration of these components has made aerodynamic shape optimization a highly automated process, requiring less and less human interference. Mesh generation, on the other hand, has become the main overhead of setting up the optimization problem. Obtaining a good computational mesh is essential in CFD simulations for accurate output predictions, which as a result significantly affects the reliability of optimization results. However, this is in general a nontrivial task, heavily relying on the user’s experience, and it can be worse with the emerging high-fidelity requirements or in the design of novel configurations. On the other hand, mesh quality and the associated numerical errors are typically only studied before and after the optimization, leaving the design search path unveiled to numerical errors. This work tackles these issues by integrating an additional component, output-based mesh adaptation, within traditional aerodynamic shape optimizations. First, we develop a more suitable error estimator for optimization problems by taking into account errors in both the objective and constraint outputs. The localized output errors are then used to drive mesh adaptation to achieve the desired accuracy on both the objective and constraint outputs. With the variable fidelity offered by the adaptive meshes, multi-fidelity optimization frameworks are developed to tightly couple mesh adaptation and shape optimization. The objective functional and its sensitivity are first evaluated on an initial coarse mesh, which is then subsequently adapted as the shape optimization proceeds. The effort to set up the optimization is minimal since the initial mesh can be fairly coarse and easy to generate. Meanwhile, the proposed framework saves computational costs by reducing the mesh size at the early stages of the optimization, when the design is far from optimal, and avoiding exhaustive search on low-fidelity meshes when the outputs are inaccurate. To further improve the computational efficiency, we also introduce new methods to accelerate the error estimation and mesh adaptation using machine learning techniques. Surrogate models are developed to predict the localized output error and optimal mesh anisotropy to guide the adaptation. The proposed machine learning approaches demonstrate good performance in two-dimensional test problems, encouraging more study and developments to incorporate them within aerodynamic optimization techniques. Although CFD has been extensively used in aircraft design and optimization, the design automation, reliability, and efficiency are largely limited by the mesh generation process and the fixed-mesh optimization paradigm. With the emerging high-fidelity requirements and the further developments of unconventional configurations, CFD-based optimization has to be made more accurate and more efficient to achieve higher design reliability and lower computational cost. Furthermore, future aerodynamic optimization needs to avoid unnecessary overhead in mesh generation and optimization setup to further automate the design process. The author expects the methods developed in this work to be the keys to enable more automated, reliable, and efficient aerodynamic shape optimization, making CFD-based optimization a more powerful tool in aircraft design.PHDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163034/1/cgderic_1.pd

    2022 Review of Data-Driven Plasma Science

    Get PDF
    Data-driven science and technology offer transformative tools and methods to science. This review article highlights the latest development and progress in the interdisciplinary field of data-driven plasma science (DDPS), i.e., plasma science whose progress is driven strongly by data and data analyses. Plasma is considered to be the most ubiquitous form of observable matter in the universe. Data associated with plasmas can, therefore, cover extremely large spatial and temporal scales, and often provide essential information for other scientific disciplines. Thanks to the latest technological developments, plasma experiments, observations, and computation now produce a large amount of data that can no longer be analyzed or interpreted manually. This trend now necessitates a highly sophisticated use of high-performance computers for data analyses, making artificial intelligence and machine learning vital components of DDPS. This article contains seven primary sections, in addition to the introduction and summary. Following an overview of fundamental data-driven science, five other sections cover widely studied topics of plasma science and technologies, i.e., basic plasma physics and laboratory experiments, magnetic confinement fusion, inertial confinement fusion and high-energy-density physics, space and astronomical plasmas, and plasma technologies for industrial and other applications. The final section before the summary discusses plasma-related databases that could significantly contribute to DDPS. Each primary section starts with a brief introduction to the topic, discusses the state-of-the-art developments in the use of data and/or data-scientific approaches, and presents the summary and outlook. Despite the recent impressive signs of progress, the DDPS is still in its infancy. This article attempts to offer a broad perspective on the development of this field and identify where further innovations are required

    Multiphysics simulations: challenges and opportunities.

    Full text link
    corecore