1,063 research outputs found

    Online Local Learning via Semidefinite Programming

    Full text link
    In many online learning problems we are interested in predicting local information about some universe of items. For example, we may want to know whether two items are in the same cluster rather than computing an assignment of items to clusters; we may want to know which of two teams will win a game rather than computing a ranking of teams. Although finding the optimal clustering or ranking is typically intractable, it may be possible to predict the relationships between items as well as if you could solve the global optimization problem exactly. Formally, we consider an online learning problem in which a learner repeatedly guesses a pair of labels (l(x), l(y)) and receives an adversarial payoff depending on those labels. The learner's goal is to receive a payoff nearly as good as the best fixed labeling of the items. We show that a simple algorithm based on semidefinite programming can obtain asymptotically optimal regret in the case where the number of possible labels is O(1), resolving an open problem posed by Hazan, Kale, and Shalev-Schwartz. Our main technical contribution is a novel use and analysis of the log determinant regularizer, exploiting the observation that log det(A + I) upper bounds the entropy of any distribution with covariance matrix A.Comment: 10 page

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    Új módszerek az adattömörítésben = New methods in data compression

    Get PDF
    Univerzális, kis késleltetésű kódokat terveztünk individuális sorozatok veszteséges tömörítésére, melyek ugyanolyan jó teljesítményt nyújtanak, mint a sorozathoz illesztett legjobb időben változó kód egy referenciaosztályból, mely az alkalmazott kódolási eljárást időről időre változtathatja. Hatékony, kis komplexitású implementációt készítettünk arra az esetre, amikor az alap-referenciaosztály a hagyományos vagy bizonyos hálózati skalárkvantálók osztálya. Új útvonalválasztási módszereket dolgoztunk ki kommunikációs hálózatokra, melyek aszimptotikusan ugyanolyan jó QoS (csomagvesztési arány, késleltetés) eredményt adnak, mint a változó hálózati környezethez (utólag) illesztett legjobb út. Kiemelendő, hogy a módszer teljesítménye és komplexitása időben optimális konvergenciasebesség mellett a hálózat méretével (és nem az utak számával) skálázik. Kísérletek szerint az elterjedt standard bájt-alapú tömörítő algoritmusok rosszul teljesítenek, ha a forrás nem bájt-alapú, ugyanakkor a bit-alapú módszerek jól működnek bájt-alapú forrásokra is (továbbá komplexitásuk - az alkalmazott kisebb ábécé miatt - gyakran lényegesen kisebb). Ezt a megfigyelést elméletileg is igazoltuk, megvizsgálva, hogy hogyan közelíthetőek blokk-Markov-források magasabb rendű szimbólum-alapú Markov-modellek segítségével. Megoldottuk a ládapakolási probléma egy szekvenciális, on-line változatát, mely alkalmazható bizonyos, kevés erőforrással rendelkező szenzorok hatékony adásütemezésére. | We designed limited-delay data compression methods that perform asymptotically as well as the best time-varying code from a reference family (matched to the source sequence in hindsight) that can change the employed base code several times. We provided efficient, low-complexity solutions for the cases when the base reference class is the set of traditional or certain network scalar quantizers. We developed routing algorithms for communication networks that can provide asymptotically as good QoS parameters (such as packet loss ratio or delay) as the best fixed path in the network matched to the varying conditions in hindsight. The performance and complexity of the developed methods scale with the size of the network (instead of with the number of paths) even when the rate of convergence (in time) is optimal. Experiments indicate that data for which bytes are not the natural choice of symbols compress poorly using standard byte-based implementations of lossless data compression algorithms, while algorithms working on a bit level perform reasonably on byte-based data (in addition to having computational advantages resulting from operating on a small alphabet). We explained this phenomenon by analyzing how block Markov sources can be approximated with symbol-based higher order Markov sources. We provided a solution to a sequential on-line version of the bin packing problem, which can be applied to schedule transmissions for certain sensors with limited resources

    Planning Robust Strategies for Constructing Multi-object Arrangements

    Get PDF
    A crucial challenge in robotics is achieving reliable results in spite of sensing and control uncertainty. A prominent strategy for dealing with uncertainty is to construct a feedback policy, where actions are chosen as a function of the current state estimate. However, constructing such policies is computationally very difficult. An alternative strategy is conformant planning which finds open-loop action sequences that achieve the goal for all input states and action outcomes. In this work, we investigate the conformant planning approach to robot manipulation. In particular, we tackle the problem of pushing multiple objects simultaneously to achieve a specified arrangement. Conformant planning is a belief-state planning problem. A belief state is the set of all possible states of the world, and the goal is to find a sequence of actions that will bring an initial belief state to a goal belief state To do forward belief-state planning, we created a deterministic belief-state transition model from supervised learning based on physics simulations. A key pitfall in conformant planning is that the complexity of the belief state tends to increase with each operation, making it increasingly harder to compute the effect of actions. This work explores the idea that we can construct conformant plans for robot manipulation by only using actions resulting in compact belief states

    Belief-space Planning for Active Visual SLAM in Underwater Environments.

    Full text link
    Autonomous mobile robots operating in a priori unknown environments must be able to integrate path planning with simultaneous localization and mapping (SLAM) in order to perform tasks like exploration, search and rescue, inspection, reconnaissance, target-tracking, and others. This level of autonomy is especially difficult in underwater environments, where GPS is unavailable, communication is limited, and environment features may be sparsely- distributed. In these situations, the path taken by the robot can drastically affect the performance of SLAM, so the robot must plan and act intelligently and efficiently to ensure successful task completion. This document proposes novel research in belief-space planning for active visual SLAM in underwater environments. Our motivating application is ship hull inspection with an autonomous underwater robot. We design a Gaussian belief-space planning formulation that accounts for the randomness of the loop-closure measurements in visual SLAM and serves as the mathematical foundation for the research in this thesis. Combining this planning formulation with sampling-based techniques, we efficiently search for loop-closure actions throughout the environment and present a two-step approach for selecting revisit actions that results in an opportunistic active SLAM framework. The proposed active SLAM method is tested in hybrid simulations and real-world field trials of an underwater robot performing inspections of a physical modeling basin and a U.S. Coast Guard cutter. To reduce computational load, we present research into efficient planning by compressing the representation and examining the structure of the underlying SLAM system. We propose the use of graph sparsification methods online to reduce complexity by planning with an approximate distribution that represents the original, full pose graph. We also propose the use of the Bayes tree data structure—first introduced for fast inference in SLAM—to perform efficient incremental updates when evaluating candidate plans that are similar. As a final contribution, we design risk-averse objective functions that account for the randomness within our planning formulation. We show that this aversion to uncertainty in the posterior belief leads to desirable and intuitive behavior within active SLAM.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133303/1/schaves_1.pd

    Annotating Synapses in Large EM Datasets

    Full text link
    Reconstructing neuronal circuits at the level of synapses is a central problem in neuroscience and becoming a focus of the emerging field of connectomics. To date, electron microscopy (EM) is the most proven technique for identifying and quantifying synaptic connections. As advances in EM make acquiring larger datasets possible, subsequent manual synapse identification ({\em i.e.}, proofreading) for deciphering a connectome becomes a major time bottleneck. Here we introduce a large-scale, high-throughput, and semi-automated methodology to efficiently identify synapses. We successfully applied our methodology to the Drosophila medulla optic lobe, annotating many more synapses than previous connectome efforts. Our approaches are extensible and will make the often complicated process of synapse identification accessible to a wider-community of potential proofreaders

    A Comprehensive Approach to Universal Piecewise Nonlinear Regression Based on Trees

    Get PDF
    Cataloged from PDF version of article.In this paper, we investigate adaptive nonlinear regression and introduce tree based piecewise linear regression algorithms that are highly efficient and provide significantly improved performance with guaranteed upper bounds in an individual sequence manner. We use a tree notion in order to partition the space of regressors in a nested structure. The introduced algorithms adapt not only their regression functions but also the complete tree structure while achieving the performance of the “best” linear mixture of a doubly exponential number of partitions, with a computational complexity only polynomial in the number of nodes of the tree. While constructing these algorithms, we also avoid using any artificial “weighting” of models (with highly data dependent parameters) and, instead, directly minimize the final regression error, which is the ultimate performance goal. The introduced methods are generic such that they can readily incorporate different tree construction methods such as random trees in their framework and can use different regressor or partitioning functions as demonstrated in the paper

    Online Social Networks: Measurements, Analysis and Solutions for Mining Challenges

    Get PDF
    In the last decade, online social networks showed enormous growth. With the rise of these networks and the consequent availability of wealth social network data, Social Network Analysis (SNA) led researchers to get the opportunity to access, analyse and mine the social behaviour of millions of people, explore the way they communicate and exchange information. Despite the growing interest in analysing social networks, there are some challenges and implications accompanying the analysis and mining of these networks. For example, dealing with large-scale and evolving networks is not yet an easy task and still requires a new mining solution. In addition, finding communities within these networks is a challenging task and could open opportunities to see how people behave in groups on a large scale. Also, the challenge of validating and optimizing communities without knowing in advance the structure of the network due to the lack of ground truth is yet another challenging barrier for validating the meaningfulness of the resulting communities. In this thesis, we started by providing an overview of the necessary background and key concepts required in the area of social networks analysis. Our main focus is to provide solutions to tackle the key challenges in this area. For doing so, first, we introduce a predictive technique to help in the prediction of the execution time of the analysis tasks for evolving networks through employing predictive modeling techniques to the problem of evolving and large-scale networks. Second, we study the performance of existing community detection approaches to derive high quality community structure using a real email network through analysing the exchange of emails and exploring community dynamics. The aim is to study the community behavioral patterns and evaluate their quality within an actual network. Finally, we propose an ensemble technique for deriving communities using a rich internal enterprise real network in IBM that reflects real collaborations and communications between employees. The technique aims to improve the community detection process through the fusion of different algorithms
    • …
    corecore