19,533 research outputs found

    An Overview of the Use of Neural Networks for Data Mining Tasks

    Get PDF
    In the recent years the area of data mining has experienced a considerable demand for technologies that extract knowledge from large and complex data sources. There is a substantial commercial interest as well as research investigations in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from datasets. Artificial Neural Networks (NN) are popular biologically inspired intelligent methodologies, whose classification, prediction and pattern recognition capabilities have been utilised successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks

    Genetic programming in data mining for drug discovery

    Get PDF
    Genetic programming (GP) is used to extract from rat oral bioavailability (OB) measurements simple, interpretable and predictive QSAR models which both generalise to rats and to marketed drugs in humans. Receiver Operating Characteristics (ROC) curves for the binary classier produced by machine learning show no statistical dierence between rats (albeit without known clearance dierences) and man. Thus evolutionary computing oers the prospect of in silico ADME screening, e.g. for \virtual" chemicals, for pharmaceutical drug discovery

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    21st Century Simulation: Exploiting High Performance Computing and Data Analysis

    Get PDF
    This paper identifies, defines, and analyzes the limitations imposed on Modeling and Simulation by outmoded paradigms in computer utilization and data analysis. The authors then discuss two emerging capabilities to overcome these limitations: High Performance Parallel Computing and Advanced Data Analysis. First, parallel computing, in supercomputers and Linux clusters, has proven effective by providing users an advantage in computing power. This has been characterized as a ten-year lead over the use of single-processor computers. Second, advanced data analysis techniques are both necessitated and enabled by this leap in computing power. JFCOM's JESPP project is one of the few simulation initiatives to effectively embrace these concepts. The challenges facing the defense analyst today have grown to include the need to consider operations among non-combatant populations, to focus on impacts to civilian infrastructure, to differentiate combatants from non-combatants, and to understand non-linear, asymmetric warfare. These requirements stretch both current computational techniques and data analysis methodologies. In this paper, documented examples and potential solutions will be advanced. The authors discuss the paths to successful implementation based on their experience. Reviewed technologies include parallel computing, cluster computing, grid computing, data logging, OpsResearch, database advances, data mining, evolutionary computing, genetic algorithms, and Monte Carlo sensitivity analyses. The modeling and simulation community has significant potential to provide more opportunities for training and analysis. Simulations must include increasingly sophisticated environments, better emulations of foes, and more realistic civilian populations. Overcoming the implementation challenges will produce dramatically better insights, for trainees and analysts. High Performance Parallel Computing and Advanced Data Analysis promise increased understanding of future vulnerabilities to help avoid unneeded mission failures and unacceptable personnel losses. The authors set forth road maps for rapid prototyping and adoption of advanced capabilities. They discuss the beneficial impact of embracing these technologies, as well as risk mitigation required to ensure success

    A new approach for discovering business process models from event logs.

    Get PDF
    Process mining is the automated acquisition of process models from the event logs of information systems. Although process mining has many useful applications, not all inherent difficulties have been sufficiently solved. A first difficulty is that process mining is often limited to a setting of non-supervised learnings since negative information is often not available. Moreover, state transitions in processes are often dependent on the traversed path, which limits the appropriateness of search techniques based on local information in the event log. Another difficulty is that case data and resource properties that can also influence state transitions are time-varying properties, such that they cannot be considered ascross-sectional.This article investigates the use of first-order, ILP classification learners for process mining and describes techniques for dealing with each of the above mentioned difficulties. To make process mining a supervised learning task, we propose to include negative events in the event log. When event logs contain no negative information, a technique is described to add artificial negative examples to a process log. To capture history-dependent behavior the article proposes to take advantage of the multi-relational nature of ILP classification learners. Multi-relational process mining allows to search for patterns among multiple event rows in the event log, effectively basing its search on global information. To deal with time-varying case data and resource properties, a closed-world version of the Event Calculus has to be added as background knowledge, transforming the event log effectively in a temporal database. First experiments on synthetic event logs show that first-order classification learners are capable of predicting the behavior with high accuracy, even under conditions of noise.Credit; Credit scoring; Models; Model; Applications; Performance; Space; Decision; Yield; Real life; Risk; Evaluation; Rules; Neural networks; Networks; Classification; Research; Business; Processes; Event; Information; Information systems; Systems; Learning; Data; Behavior; Patterns; IT; Event calculus; Knowledge; Database; Noise;

    Analytical Challenges in Modern Tax Administration: A Brief History of Analytics at the IRS

    Get PDF

    DATA MINING: A SEGMENTATION ANALYSIS OF U.S. GROCERY SHOPPERS

    Get PDF
    Consumers make choices about where to shop based on their preferences for a shopping environment and experience as well as the selection of products at a particular store. This study illustrates how retail firms and marketing analysts can utilize data mining techniques to better understand customer profiles and behavior. Among the key areas where data mining can produce new knowledge is the segmentation of customer data bases according to demographics, buying patterns, geographics, attitudes, and other variables. This paper builds profiles of grocery shoppers based on their preferences for 33 retail grocery store characteristics. The data are from a representative, nationwide sample of 900 supermarket shoppers collected in 1999. Six customer profiles are found to exist, including (1) "Time Pressed Meat Eaters", (2) "Back to Nature Shoppers", (3) "Discriminating Leisure Shoppers", (4) "No Nonsense Shoppers", (5) "The One Stop Socialites", and (6) "Middle of the Road Shoppers". Each of the customer profiles is described with respect to the underlying demographics and income. Consumer shopping segments cut across most demographic groups but are somewhat correlated with income. Hierarchical lists of preferences reveal that low price is not among the top five most important store characteristics. Experience and preferences for internet shopping shows that of the 44% who have access to the internet, only 3% had used it to order food.Consumer/Household Economics, Food Consumption/Nutrition/Food Safety,
    • ā€¦
    corecore