9,485 research outputs found

    Predicting functionality of protein–DNA interactions by integrating diverse evidence

    Get PDF
    Chromatin immunoprecipitation (ChIP-chip) experiments enable capturing physical interactions between regulatory proteins and DNA in vivo. However, measurement of chromatin binding alone is not sufficient to detect regulatory interactions. A detected binding event may not be biologically relevant, or a known regulatory interaction might not be observed under the growth conditions tested so far. To correctly identify physical interactions between transcription factors (TFs) and genes and to determine their regulatory implications under various experimental conditions, we integrated ChIP-chip data with motif binding sites, nucleosome occupancy and mRNA expression datasets within a probabilistic framework. This framework was specifically tailored for the identification of functional and non-functional DNA binding events. Using this, we estimate that only 50% of condition-specific protein–DNA binding in budding yeast is functional. We further investigated the molecular factors determining the functionality of protein–DNA interactions under diverse growth conditions. Our analysis suggests that the functionality of binding is highly condition-specific and highly dependent on the presence of specific cofactors. Hence, the joint analysis of both, functional and non-functional DNA binding, may lend important new insights into transcriptional regulation

    Contextualizing context for synthetic biology--identifying causes of failure of synthetic biological systems.

    Get PDF
    Despite the efforts that bioengineers have exerted in designing and constructing biological processes that function according to a predetermined set of rules, their operation remains fundamentally circumstantial. The contextual situation in which molecules and single-celled or multi-cellular organisms find themselves shapes the way they interact, respond to the environment and process external information. Since the birth of the field, synthetic biologists have had to grapple with contextual issues, particularly when the molecular and genetic devices inexplicably fail to function as designed when tested in vivo. In this review, we set out to identify and classify the sources of the unexpected divergences between design and actual function of synthetic systems and analyze possible methodologies aimed at controlling, if not preventing, unwanted contextual issues

    Computational study of associations between histone modification and protein-DNA binding in yeast genome by integrating diverse information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In parallel with the quick development of high-throughput technologies, <it>in vivo (vitro) </it>experiments for genome-wide identification of protein-DNA interactions have been developed. Nevertheless, a few questions remain in the field, such as how to distinguish true protein-DNA binding (functional binding) from non-specific protein-DNA binding (non-functional binding). Previous researches tackled the problem by integrated analysis of multiple available sources. However, few systematic studies have been carried out to examine the possible relationships between histone modification and protein-DNA binding. Here this issue was investigated by using publicly available histone modification data in yeast.</p> <p>Results</p> <p>Two separate histone modification datasets were studied, at both the open reading frame (ORF) and the promoter region of binding targets for 37 yeast transcription factors. Both results revealed a distinct histone modification pattern between the functional protein-DNA binding sites and non-functional ones for almost half of all TFs tested. Such difference is much stronger at the ORF than at the promoter region. In addition, a protein-histone modification interaction pathway can only be inferred from the functional protein binding targets.</p> <p>Conclusions</p> <p>Overall, the results suggest that histone modification information can be used to distinguish the functional protein-DNA binding from the non-functional, and that the regulation of various proteins is controlled by the modification of different histone lysines such as the protein-specific histone modification levels.</p

    INTEGRATIVE ANALYSIS OF OMICS DATA IN ADULT GLIOMA AND OTHER TCGA CANCERS TO GUIDE PRECISION MEDICINE

    Get PDF
    Transcriptomic profiling and gene expression signatures have been widely applied as effective approaches for enhancing the molecular classification, diagnosis, prognosis or prediction of therapeutic response towards personalized therapy for cancer patients. Thanks to modern genome-wide profiling technology, scientists are able to build engines leveraging massive genomic variations and integrating with clinical data to identify “at risk” individuals for the sake of prevention, diagnosis and therapeutic interventions. In my graduate work for my Ph.D. thesis, I have investigated genomic sequencing data mining to comprehensively characterise molecular classifications and aberrant genomic events associated with clinical prognosis and treatment response, through applying high-dimensional omics genomic data to promote the understanding of gene signatures and somatic molecular alterations contributing to cancer progression and clinical outcomes. Following this motivation, my dissertation has been focused on the following three topics in translational genomics. 1) Characterization of transcriptomic plasticity and its association with the tumor microenvironment in glioblastoma (GBM). I have integrated transcriptomic, genomic, protein and clinical data to increase the accuracy of GBM classification, and identify the association between the GBM mesenchymal subtype and reduced tumorpurity, accompanied with increased presence of tumor-associated microglia. Then I have tackled the sole source of microglial as intrinsic tumor bulk but not their corresponding neurosphere cells through both transcriptional and protein level analysis using a panel of sphere-forming glioma cultures and their parent GBM samples.FurthermoreI have demonstrated my hypothesis through longitudinal analysis of paired primary and recurrent GBM samples that the phenotypic alterations of GBM subtypes are not due to intrinsic proneural-to-mesenchymal transition in tumor cells, rather it is intertwined with increased level of microglia upon disease recurrence. Collectively I have elucidated the critical role of tumor microenvironment (Microglia and macrophages from central nervous system) contributing to the intra-tumor heterogeneity and accurate classification of GBM patients based on transcriptomic profiling, which will not only significantly impact on clinical perspective but also pave the way for preclinical cancer research. 2) Identification of prognostic gene signatures that stratify adult diffuse glioma patientsharboring1p/19q co-deletions. I have compared multiple statistical methods and derived a gene signature significantly associated with survival by applying a machine learning algorithm. Then I have identified inflammatory response and acetylation activity that associated with malignant progression of 1p/19q co-deleted glioma. In addition, I showed this signature translates to other types of adult diffuse glioma, suggesting its universality in the pathobiology of other subset gliomas. My efforts on integrative data analysis of this highly curated data set usingoptimizedstatistical models will reflect the pending update to WHO classification system oftumorsin the central nervous system (CNS). 3) Comprehensive characterization of somatic fusion transcripts in Pan-Cancers. I have identified a panel of novel fusion transcripts across all of TCGA cancer types through transcriptomic profiling. Then I have predicted fusion proteins with kinase activity and hub function of pathway network based on the annotation of genetically mobile domains and functional domain architectures. I have evaluated a panel of in -frame gene fusions as potential driver mutations based on network fusion centrality hypothesis. I have also characterised the emerging complexity of genetic architecture in fusion transcripts through integrating genomic structure and somatic variants and delineating the distinct genomic patterns of fusion events across different cancer types. Overall my exploration of the pathogenetic impact and clinical relevance of candidate gene fusions have provided fundamental insights into the management of a subset of cancer patients by predicting the oncogenic signalling and specific drug targets encoded by these fusion genes. Taken together, the translational genomic research I have conducted during my Ph.D. study will shed new light on precision medicine and contribute to the cancer research community. The novel classification concept, gene signature and fusion transcripts I have identified will address several hotly debated issues in translational genomics, such as complex interactions between tumor bulks and their adjacent microenvironments, prognostic markers for clinical diagnostics and personalized therapy, distinct patterns of genomic structure alterations and oncogenic events in different cancer types, therefore facilitating our understanding of genomic alterations and moving us towards the development of precision medicine

    Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis.

    Get PDF
    Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp), we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available.ImportanceTo fully comprehend the diverse functions of a protein, it is essential to understand the functionality of individual residues. Current methods are highly dependent on evolutionary sequence conservation, which is usually limited by sampling size. Sequence conservation-based methods are further confounded by structural constraints and multifunctionality of proteins. Here we present a method that can systematically identify and annotate functional residues of a given protein. We used a high-throughput functional profiling platform to identify essential residues. Coupling it with homologous-structure comparison, we were able to annotate multiple functions of proteins. We demonstrated the method with the PB1 protein of influenza A virus and identified novel functional residues in addition to its canonical function as an RNA-dependent RNA polymerase. Not limited to virology, this method is generally applicable to other proteins that can be functionally selected and about which homologous-structure information is available

    Integrative Identification of Arabidopsis Mitochondrial Proteome and Its Function Exploitation through Protein Interaction Network

    Get PDF
    Mitochondria are major players on the production of energy, and host several key reactions involved in basic metabolism and biosynthesis of essential molecules. Currently, the majority of nucleus-encoded mitochondrial proteins are unknown even for model plant Arabidopsis. We reported a computational framework for predicting Arabidopsis mitochondrial proteins based on a probabilistic model, called Naive Bayesian Network, which integrates disparate genomic data generated from eight bioinformatics tools, multiple orthologous mappings, protein domain properties and co-expression patterns using 1,027 microarray profiles. Through this approach, we predicted 2,311 candidate mitochondrial proteins with 84.67% accuracy and 2.53% FPR performances. Together with those experimental confirmed proteins, 2,585 mitochondria proteins (named CoreMitoP) were identified, we explored those proteins with unknown functions based on protein-protein interaction network (PIN) and annotated novel functions for 26.65% CoreMitoP proteins. Moreover, we found newly predicted mitochondrial proteins embedded in particular subnetworks of the PIN, mainly functioning in response to diverse environmental stresses, like salt, draught, cold, and wound etc. Candidate mitochondrial proteins involved in those physiological acitivites provide useful targets for further investigation. Assigned functions also provide comprehensive information for Arabidopsis mitochondrial proteome

    Metagenomics for Bacteriology

    Get PDF
    The study of bacteria, or bacteriology, has gone through transformative waves since its inception in the 1600s. It all started by the visualization of bacteria using light microscopy by Antonie van Leeuwenhoek, when he first described “animalcules.” Direct cellular observation then evolved into utilizing different wavelengths on novel platforms such as electron, fluorescence, and even near-infrared microscopy. Understanding the link between microbes and disease (pathogenicity) began with the ability to isolate and cultivate organisms through aseptic methodologies starting in the 1700s. These techniques became more prevalent in the following centuries with the work of famous scientists such as Louis Pasteur and Robert Koch, and many others since then. The relationship between bacteria and the host’s immune system was first inferred in the 1800s, and to date is continuing to unveil its mysteries. During the last century, researchers initiated the era of molecular genetics. The discovery of the first-generation sequencing technology, the Sanger method, and, later, the polymerase chain reaction technology propelled the molecular genetics field by exponentially expanding the knowledge of relationship between gene structure and function. The rise of commercially available next-generation sequencing methodologies, in the beginning of this century, is drastically allowing larger amount of information to be acquired, in a manner open to the democratization of the approach
    corecore