559 research outputs found

    Predicting epidemic outbreak from individual features of the spreaders

    Full text link
    Knowing which individuals can be more efficient in spreading a pathogen throughout a determinate environment is a fundamental question in disease control. Indeed, over the last years the spread of epidemic diseases and its relationship with the topology of the involved system have been a recurrent topic in complex network theory, taking into account both network models and real-world data. In this paper we explore possible correlations between the heterogeneous spread of an epidemic disease governed by the susceptible-infected-recovered (SIR) model, and several attributes of the originating vertices, considering Erd\"os-R\'enyi (ER), Barab\'asi-Albert (BA) and random geometric graphs (RGG), as well as a real case of study, the US Air Transportation Network that comprises the US 500 busiest airports along with inter-connections. Initially, the heterogeneity of the spreading is achieved considering the RGG networks, in which we analytically derive an expression for the distribution of the spreading rates among the established contacts, by assuming that such rates decay exponentially with the distance that separates the individuals. Such distribution is also considered for the ER and BA models, where we observe topological effects on the correlations. In the case of the airport network, the spreading rates are empirically defined, assumed to be directly proportional to the seat availability. Among both the theoretical and the real networks considered, we observe a high correlation between the total epidemic prevalence and the degree, as well as the strength and the accessibility of the epidemic sources. For attributes such as the betweenness centrality and the kk-shell index, however, the correlation depends on the topology considered.Comment: 10 pages, 6 figure

    A measure of individual role in collective dynamics

    Get PDF
    Identifying key players in collective dynamics remains a challenge in several research fields, from the efficient dissemination of ideas to drug target discovery in biomedical problems. The difficulty lies at several levels: how to single out the role of individual elements in such intermingled systems, or which is the best way to quantify their importance. Centrality measures describe a node's importance by its position in a network. The key issue obviated is that the contribution of a node to the collective behavior is not uniquely determined by the structure of the system but it is a result of the interplay between dynamics and network structure. We show that dynamical influence measures explicitly how strongly a node's dynamical state affects collective behavior. For critical spreading, dynamical influence targets nodes according to their spreading capabilities. For diffusive processes it quantifies how efficiently real systems may be controlled by manipulating a single node.Comment: accepted for publication in Scientific Report

    Dynamic communicability and epidemic spread: a case study on an empirical dynamic contact network

    Full text link
    We analyze a recently proposed temporal centrality measure applied to an empirical network based on person-to-person contacts in an emergency department of a busy urban hospital. We show that temporal centrality identifies a distinct set of top-spreaders than centrality based on the time-aggregated binarized contact matrix, so that taken together, the accuracy of capturing top-spreaders improves significantly. However, with respect to predicting epidemic outcome, the temporal measure does not necessarily outperform less complex measures. Our results also show that other temporal markers such as duration observed and the time of first appearance in the the network can be used in a simple predictive model to generate predictions that capture the trend of the observed data remarkably well.Comment: 31 pages, 15 figures, 11 tables; typos corrected; references added; Figure 3 added; some changes to the conclusion and introductio

    Top influencers can be identified universally by combining classical centralities

    Get PDF
    Information flow, opinion, and epidemics spread over structured networks. When using individual node centrality indicators to predict which nodes will be among the top influencers or spreaders in a large network, no single centrality has consistently good ranking power. We show that statistical classifiers using two or more centralities as input are instead consistently predictive over many diverse, static real-world topologies. Certain pairs of centralities cooperate particularly well in statistically drawing the boundary between the top spreaders and the rest: local centralities measuring the size of a node's neighbourhood benefit from the addition of a global centrality such as the eigenvector centrality, closeness, or the core number. This is, intuitively, because a local centrality may rank highly some nodes which are located in dense, but peripheral regions of the network---a situation in which an additional global centrality indicator can help by prioritising nodes located more centrally. The nodes selected as superspreaders will usually jointly maximise the values of both centralities. As a result of the interplay between centrality indicators, training classifiers with seven classical indicators leads to a nearly maximum average precision function (0.995) across the networks in this study.Comment: 14 pages, 10 figures, 4 supplementary figure

    A General Framework for Complex Network Applications

    Full text link
    Complex network theory has been applied to solving practical problems from different domains. In this paper, we present a general framework for complex network applications. The keys of a successful application are a thorough understanding of the real system and a correct mapping of complex network theory to practical problems in the system. Despite of certain limitations discussed in this paper, complex network theory provides a foundation on which to develop powerful tools in analyzing and optimizing large interconnected systems.Comment: 8 page

    Detecting the Influence of Spreading in Social Networks with Excitable Sensor Networks

    Full text link
    Detecting spreading outbreaks in social networks with sensors is of great significance in applications. Inspired by the formation mechanism of human's physical sensations to external stimuli, we propose a new method to detect the influence of spreading by constructing excitable sensor networks. Exploiting the amplifying effect of excitable sensor networks, our method can better detect small-scale spreading processes. At the same time, it can also distinguish large-scale diffusion instances due to the self-inhibition effect of excitable elements. Through simulations of diverse spreading dynamics on typical real-world social networks (facebook, coauthor and email social networks), we find that the excitable senor networks are capable of detecting and ranking spreading processes in a much wider range of influence than other commonly used sensor placement methods, such as random, targeted, acquaintance and distance strategies. In addition, we validate the efficacy of our method with diffusion data from a real-world online social system, Twitter. We find that our method can detect more spreading topics in practice. Our approach provides a new direction in spreading detection and should be useful for designing effective detection methods

    Beyond ranking nodes: Predicting epidemic outbreak sizes by network centralities

    Get PDF
    Identifying important nodes for disease spreading is a central topic in network epidemiology. We investigate how well the position of a node, characterized by standard network measures, can predict its epidemiological importance in any graph of a given number of nodes. This is in contrast to other studies that deal with the easier prediction problem of ranking nodes by their epidemic importance in given graphs. As a benchmark for epidemic importance, we calculate the exact expected outbreak size given a node as the source. We study exhaustively all graphs of a given size, so do not restrict ourselves to certain generative models for graphs, nor to graph data sets. Due to the large number of possible nonisomorphic graphs of a fixed size, we are limited to 10-node graphs. We find that combinations of two or more centralities are predictive (R2R^2 scores of 0.91 or higher) even for the most difficult parameter values of the epidemic simulation. Typically, these successful combinations include one normalized spectral centralities (such as PageRank or Katz centrality) and one measure that is sensitive to the number of edges in the graph
    corecore