352 research outputs found

    Machine Learning and Genome Annotation: A Match Meant to Be?

    Get PDF
    By its very nature, genomics produces large, high-dimensional datasets that are well suited to analysis by machine learning approaches. Here, we explain some key aspects of machine learning that make it useful for genome annotation, with illustrative examples from ENCODE

    Prediction of regulatory elements in mammalian genomes using chromatin signatures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent genomic scale survey of epigenetic states in the mammalian genomes has shown that promoters and enhancers are correlated with distinct chromatin signatures, providing a pragmatic way for systematic mapping of these regulatory elements in the genome. With rapid accumulation of chromatin modification profiles in the genome of various organisms and cell types, this chromatin based approach promises to uncover many new regulatory elements, but computational methods to effectively extract information from these datasets are still limited.</p> <p>Results</p> <p>We present here a supervised learning method to predict promoters and enhancers based on their unique chromatin modification signatures. We trained Hidden Markov models (HMMs) on the histone modification data for known promoters and enhancers, and then used the trained HMMs to identify promoter or enhancer like sequences in the human genome. Using a simulated annealing (SA) procedure, we searched for the most informative combination and the optimal window size of histone marks.</p> <p>Conclusion</p> <p>Compared with the previous methods, the HMM method can capture the complex patterns of histone modifications particularly from the weak signals. Cross validation and scanning the ENCODE regions showed that our method outperforms the previous profile-based method in mapping promoters and enhancers. We also showed that including more histone marks can further boost the performance of our method. This observation suggests that the HMM is robust and is capable of integrating information from multiple histone marks. To further demonstrate the usefulness of our method, we applied it to analyzing genome wide ChIP-Seq data in three mouse cell lines and correctly predicted active and inactive promoters with positive predictive values of more than 80%. The software is available at <url>http://http:/nash.ucsd.edu/chromatin.tar.gz</url>.</p

    Identifying genome-wide transcription units from histone modifications using EPIGENE

    Get PDF
    With the successful completion of the human genome project and the rapid development of sequencing technologies, transcriptome annotation across multiple human cell types and tissues is now available. Accurate transcriptome annotation is critical for understanding the functional as well as the regulatory roles of genomic regions. Current methods for identifying genome-wide active transcription units (TUs) use RNA sequencing (RNA-seq). However, this approach requires large quantities of mRNAs making the identification of highly unstable regulatory RNAs (like microRNA precursors) difficult. As a result of this complexity in identifying inherently unstable TUs, the transcriptome landscape across all cells and tissues remains incomplete. This problem can be alleviated by chromatin-based approaches due to a well-established correlation between transcription and histone modification. Here, I present EPIGENE, a novel chromatin segmentation method for identifying genome-wide active TUs using transcription-associated histone modifications. Unlike existing chromatin segmentation approaches, EPIGENE uses a constrained, semi-supervised multivariate Hidden Markov Model (HMM) that models the observed combination of histone modifications using a product of independent Bernoulli random variables to identify the chromatin state sequence underlying an active TU. Using EPIGENE, I successfully predicted genome-wide TUs across multiple human cell lines. EPIGENE predicted TUs were enriched for RNA Polymerase II (Pol II) at the transcription start site (TSS) and in gene body indicating that they are indeed transcribed. Comprehensive validation using existing annotations revealed that 93% of EPIGENE TUs can be explained by existing gene annotations and 5% of EPIGENE TUs in HepG2 can be explained by microRNA annotations. EPIGENE predicted TUs more precisely compared to existing chromatin segmentation and RNA-seq based approaches across multiple human cell lines. Using EPIGENE, I also identified 232 novel TUs in K562 and 43 novel cell-specific TUs in K562, HepG2, and IMR90, all of which were supported by Pol II ChIP-seq and nascent RNA-seq evidence

    Discovery and characterization of chromatin states for systematic annotation of the human genome

    Get PDF
    A plethora of epigenetic modifications have been described in the human genome and shown to play diverse roles in gene regulation, cellular differentiation and the onset of disease. Although individual modifications have been linked to the activity levels of various genetic functional elements, their combinatorial patterns are still unresolved and their potential for systematic de novo genome annotation remains untapped. Here, we use a multivariate Hidden Markov Model to reveal 'chromatin states' in human T cells, based on recurrent and spatially coherent combinations of chromatin marks. We define 51 distinct chromatin states, including promoter-associated, transcription-associated, active intergenic, large-scale repressed and repeat-associated states. Each chromatin state shows specific enrichments in functional annotations, sequence motifs and specific experimentally observed characteristics, suggesting distinct biological roles. This approach provides a complementary functional annotation of the human genome that reveals the genome-wide locations of diverse classes of epigenetic function.National Science Foundation (U.S.). (Award 0905968)National Human Genome Research Institute (U.S.) (Award U54-HG004570)National Human Genome Research Institute (U.S.) (Award RC1-HG005334

    Prediction of Alternative Splice Sites in Human Genes

    Get PDF
    This thesis addresses the problem of predicting alternative splice sites in human genes. The most common way to identify alternative splice sites are the use of expressed sequence tags and microarray data. Since genes only produce alternative proteins under certain conditions, these methods are limited to detecting only alternative splice sites in genes whose alternative protein forms are expressed under the tested conditions. I have introduced three multiclass support vector machines that predict upstream and downstream alternative 3’ splice sites, upstream and downstream alternative 5’ splice sites, and the 3’ splice site of skipped and cryptic exons. On a test set extracted from the Alternative Splice Annotation Project database, I was able to correctly classify about 68% of the splice sites in the alternative 3’ set, about 62% of the splice sites in the alternative 5’ set, and about 66% in the exon skipping set

    Integrating Diverse Datasets Improves Developmental Enhancer Prediction

    Get PDF
    Gene-regulatory enhancers have been identified using various approaches, including evolutionary conservation, regulatory protein binding, chromatin modifications, and DNA sequence motifs. To integrate these different approaches, we developed EnhancerFinder, a two-step method for distinguishing developmental enhancers from the genomic background and then predicting their tissue specificity. EnhancerFinder uses a multiple kernel learning approach to integrate DNA sequence motifs, evolutionary patterns, and diverse functional genomics datasets from a variety of cell types. In contrast with prediction approaches that define enhancers based on histone marks or p300 sites from a single cell line, we trained EnhancerFinder on hundreds of experimentally verified human developmental enhancers from the VISTA Enhancer Browser. We comprehensively evaluated EnhancerFinder using cross validation and found that our integrative method improves the identification of enhancers over approaches that consider a single type of data, such as sequence motifs, evolutionary conservation, or the binding of enhancer-associated proteins. We find that VISTA enhancers active in embryonic heart are easier to identify than enhancers active in several other embryonic tissues, likely due to their uniquely high GC content. We applied EnhancerFinder to the entire human genome and predicted 84,301 developmental enhancers and their tissue specificity. These predictions provide specific functional annotations for large amounts of human non-coding DNA, and are significantly enriched near genes with annotated roles in their predicted tissues and lead SNPs from genome-wide association studies. We demonstrate the utility of EnhancerFinder predictions through in vivo validation of novel embryonic gene regulatory enhancers from three developmental transcription factor loci. Our genome-wide developmental enhancer predictions are freely available as a UCSC Genome Browser track, which we hope will enable researchers to further investigate questions in developmental biology. © 2014 Erwin et al
    • …
    corecore