43,234 research outputs found

    Viraliency: Pooling Local Virality

    Get PDF
    In our overly-connected world, the automatic recognition of virality - the quality of an image or video to be rapidly and widely spread in social networks - is of crucial importance, and has recently awaken the interest of the computer vision community. Concurrently, recent progress in deep learning architectures showed that global pooling strategies allow the extraction of activation maps, which highlight the parts of the image most likely to contain instances of a certain class. We extend this concept by introducing a pooling layer that learns the size of the support area to be averaged: the learned top-N average (LENA) pooling. We hypothesize that the latent concepts (feature maps) describing virality may require such a rich pooling strategy. We assess the effectiveness of the LENA layer by appending it on top of a convolutional siamese architecture and evaluate its performance on the task of predicting and localizing virality. We report experiments on two publicly available datasets annotated for virality and show that our method outperforms state-of-the-art approaches.Comment: Accepted at IEEE CVPR 201

    Towards Accountable AI: Hybrid Human-Machine Analyses for Characterizing System Failure

    Full text link
    As machine learning systems move from computer-science laboratories into the open world, their accountability becomes a high priority problem. Accountability requires deep understanding of system behavior and its failures. Current evaluation methods such as single-score error metrics and confusion matrices provide aggregate views of system performance that hide important shortcomings. Understanding details about failures is important for identifying pathways for refinement, communicating the reliability of systems in different settings, and for specifying appropriate human oversight and engagement. Characterization of failures and shortcomings is particularly complex for systems composed of multiple machine learned components. For such systems, existing evaluation methods have limited expressiveness in describing and explaining the relationship among input content, the internal states of system components, and final output quality. We present Pandora, a set of hybrid human-machine methods and tools for describing and explaining system failures. Pandora leverages both human and system-generated observations to summarize conditions of system malfunction with respect to the input content and system architecture. We share results of a case study with a machine learning pipeline for image captioning that show how detailed performance views can be beneficial for analysis and debugging

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 341)

    Get PDF
    This bibliography lists 133 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during September 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance
    • …
    corecore