1,371 research outputs found

    D3P : Data-driven demand prediction for fast expanding electric vehicle sharing systems

    Get PDF
    The future of urban mobility is expected to be shared and electric. It is not only a more sustainable paradigm that can reduce emissions, but can also bring societal benefits by offering a more affordable on-demand mobility option to the general public. Many car sharing service providers as well as automobile manufacturers are entering the competition by expanding both their EV fleets and renting/returning station networks, aiming to seize a share of the market and to bring car sharing to the zero emissions level. During their fast expansion, one determinant for success is the ability of predicting the demand of stations as the entire system is growing continuously. There are several challenges in this demand prediction problem: First, unlike most of the existing work which predicts demand only for static systems or at few stages of expansion, in the real world we often need to predict the demand as or even before stations are being deployed or closed, to provide information and decision support. Second, for the new stations to be deployed, there is no historical data available to help the prediction of their demand. Finally, the impact of deploying/closing stations on the other stations in the system can be complex. To address these challenges, we formulate the demand prediction problem in the context of fast expanding electric vehicle sharing systems, and propose a data-driven demand prediction approach which aims to model the expansion dynamics directly from the data. We use a local temporal encoding process to handle the historical data for each existing station, and a dynamic spatial encoding process to take correlations between stations into account with Graph Convolutional Neural Networks (GCN). The encoded features are fed to a multi-scale predictor, which forecasts both the long-term expected demand of the stations and their instant demand in the near future. We evaluate the proposed approach with real-world data collected from a major EV sharing platform for one year. Experimental results demonstrate that our approach significantly outperforms the state of the art, showing up to three-fold performance gain in predicting demand for the expanding EV sharing systems

    STG2Seq: Spatial-temporal Graph to Sequence Model for Multi-step Passenger Demand Forecasting

    Full text link
    Multi-step passenger demand forecasting is a crucial task in on-demand vehicle sharing services. However, predicting passenger demand over multiple time horizons is generally challenging due to the nonlinear and dynamic spatial-temporal dependencies. In this work, we propose to model multi-step citywide passenger demand prediction based on a graph and use a hierarchical graph convolutional structure to capture both spatial and temporal correlations simultaneously. Our model consists of three parts: 1) a long-term encoder to encode historical passenger demands; 2) a short-term encoder to derive the next-step prediction for generating multi-step prediction; 3) an attention-based output module to model the dynamic temporal and channel-wise information. Experiments on three real-world datasets show that our model consistently outperforms many baseline methods and state-of-the-art models.Comment: 7 page

    Deep Learning for Short-Term Prediction of Available Bikes on Bike-Sharing Stations

    Get PDF
    Bike-sharing is adopted as a valid option replacing traditional public transports since they are eco-friendly, prevent traffic congestions, reduce any possible risk of social contacts which happen mostly on public means. However, some problems may occur such as the irregular distribution of bikes on related stations/racks/areas, and the difficulty of knowing in advance what the rack status will be like, or predicting if there will be bikes available in a specific bike-station at a certain time of the day, or if there will be a free slot to leave the rented bike. Thus, providing predictions can be useful to improve the service quality, especially in those cases where bike racks are used for e-bikes, which need to be recharged. This paper compares the state-of-the-art techniques to predict the number of available bikes and free bike-slots in bike-sharing stations (i.e., bike racks). To this end, a set of features and predictive models were compared to identify the best models and predictors for short-term predictions, namely of 15, 30, 45, and 60 minutes. The study has demonstrated that deep learning and in particular Bidirectional Long Short-Term Memory networks (Bi-LSTM) offers a robust approach for the implementation of reliable and fast predictions of available bikes, even with a limited amount of historical data. This paper has also reported an analysis of feature relevance based on SHAP that demonstrated the validity of the model for different cluster behaviours. Both solution and its validation were derived by using data collected in bike-stations in the cities of Siena and Pisa (Italy), in the context of Sii-Mobility National Research Project on Mobility and Transport and Snap4City Smart City IoT infrastructure

    Using a Machine Learning Approach to Implement and Evaluate Product Line Features

    Get PDF
    Bike-sharing systems are a means of smart transportation in urban environments with the benefit of a positive impact on urban mobility. In this paper we are interested in studying and modeling the behavior of features that permit the end user to access, with her/his web browser, the status of the Bike-Sharing system. In particular, we address features able to make a prediction on the system state. We propose to use a machine learning approach to analyze usage patterns and learn computational models of such features from logs of system usage. On the one hand, machine learning methodologies provide a powerful and general means to implement a wide choice of predictive features. On the other hand, trained machine learning models are provided with a measure of predictive performance that can be used as a metric to assess the cost-performance trade-off of the feature. This provides a principled way to assess the runtime behavior of different components before putting them into operation.Comment: In Proceedings WWV 2015, arXiv:1508.0338

    A spatio-temporal deep learning model for short-term bike-sharing demand prediction

    Get PDF
    Bike-sharing systems are widely operated in many cities as green transportation means to solve the last mile problem and reduce traffic congestion. One of the critical challenges in operating high-quality bike-sharing systems is rebalancing bike stations from being full or empty. However, the complex characteristics of spatiotemporal dependency on usage demand may lead to difficulties for traditional statistical models in dealing with this complex relationship. To address this issue, we propose a graph-based neural network model to learn the representation of bike-sharing demand spatial-temporal graph. The model has the ability to use graph-structured data and takes both spatial -and temporal aspects into consideration. A case study about bike-sharing systems in Nanjing, a large city in China, is conducted based on the proposed method. The results show that the algorithm can predict short-term bike demand with relatively high accuracy and low computing time. The predicted errors for the hourly station level usage demand prediction are often within 20 bikes. The results provide helpful tools for short-term usage demand prediction of bike-sharing systems and other similar shared mobility systems
    • …
    corecore