32 research outputs found

    A Macroecological Analysis of SERA Derived Forest Heights and Implications for Forest Volume Remote Sensing

    Get PDF
    Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which account for tree collections in forests. For remote sensing and allometric applications, this height is not entirely understood in terms of its location. Here, a forest growth model (SERA) analyzes forest canopy height relationships with forest wood volume. Maximum height, mean, H100, and Lorey's height are examined for variability under plant number density, resource and species. Our findings, shown to be allometrically consistent with empirical measurements for forested communities world-wide, are analyzed for implications to forest remote sensing techniques such as LiDAR and RADAR. Traditional forestry measures of maximum height, and to a lesser extent H100 and Lorey's, exhibit little consistent correlation with forest volume across modeled conditions. The implication is that using forest height to infer volume or biomass from remote sensing requires species and community behavioral information to infer accurate estimates using height alone. SERA predicts mean height to provide the most consistent relationship with volume of the height classifications studied and overall across forest variations. This prediction agrees with empirical data collected from conifer and angiosperm forests with plant densities ranging between 102–106 plants/hectare and heights 6–49 m. Height classifications investigated are potentially linked to radar scattering centers with implications for allometry. These findings may be used to advance forest biomass estimation accuracy through remote sensing. Furthermore, Lorey's height with its specific relationship to remote sensing physics is recommended as a more universal indicator of volume when using remote sensing than achieved using either maximum height or H100

    Interferometric SAR DEMs for Forest Change in Uganda 2000–2012

    Get PDF
    Monitoring changes in forest height, biomass and carbon stock is important for understanding the drivers of forest change, clarifying the geography and magnitude of the fluxes of the global carbon budget and for providing input data to REDD+. The objective of this study was to investigate the feasibility of covering these monitoring needs using InSAR DEM changes over time and associated estimates of forest biomass change and corresponding net CO2 emissions. A wall-to-wall map of net forest change for Uganda with its tropical forests was derived from two Digital Elevation Model (DEM) datasets, namely the SRTM acquired in 2000 and TanDEM-X acquired around 2012 based on Interferometric SAR (InSAR) and based on the height of the phase center. Errors in the form of bias, as well as parallel lines and belts having a certain height shift in the SRTM DEM were removed, and the penetration difference between X- and C-band SAR into the forest canopy was corrected. On average, we estimated X-band InSAR height to decrease by 7 cm during the period 2000–2012, corresponding to an estimated annual CO2 emission of 5 Mt for the entirety of Uganda. The uncertainty of this estimate given as a 95% confidence interval was 2.9–7.1 Mt. The presented method has a number of issues that require further research, including the particular SRTM biases and artifact errors; the penetration difference between the X- and C-band; the final height adjustment; and the validity of a linear conversion from InSAR height change to AGB change. However, the results corresponded well to other datasets on forest change and AGB stocks, concerning both their geographical variation and their aggregated values.publishedVersio

    Relationships of S-Band Radar Backscatter and Forest Aboveground Biomass in Different Forest Types

    Get PDF
    Synthetic Aperture Radar (SAR) signals respond to the interactions of microwaves with vegetation canopy scatterers that collectively characterise forest structure. The sensitivity of S-band (7.5–15 cm) backscatter to the different forest types (broadleaved, needleleaved) with varying aboveground biomass (AGB) across temperate (mixed, needleleaved) and tropical (broadleaved, woody savanna, secondary) forests is less well understood. In this study, Michigan Microwave Canopy Scattering (MIMICS-I) radiative transfer model simulations showed strong volume scattering returns from S-band SAR for broadleaved canopies caused by ground/trunk interactions. A general relationship between AirSAR S-band measurements and MIMICS-I simulated radar backscatter with forest AGB up to nearly 100 t/ha in broadleaved forest in the UK was found. Simulated S-band backscatter-biomass relationships suggest increasing backscatter sensitivity to forest biomass with a saturation level close to 100 t/ha and errors between 37 t/ha and 44 t/ha for HV and VV polarisations for tropical ecosystems. In the near future, satellite SAR-derived forest biomass from P-band BIOMASS mission and L-band ALOS-2 PALSAR-2 in combination with S-band UK NovaSAR-S and the joint NASA-ISRO NISAR sensors will provide better quantification of large-scale forest AGB at varying sensitivity levels across primary and secondary forests and woody savannas

    Comparing synthetic aperture radar and LiDAR for above-ground biomass estimation in Glen Affric, Scotland

    Get PDF
    Quantifying above-ground biomass (AGB) and carbon sequestration has been a significant focus of attention within the UNFCCC and Kyoto Protocol for improvement of national carbon accounting systems (IPCC, 2007; UNFCCC, 2011). A multitude of research has been carried out in relatively flat and homogeneous forests (Ranson & Sun, 1994; Beaudoin et al.,1994; Kurvonen et al., 1999; Austin et al., 2003; Dimitris et al., 2005), yet forests in the highlands, which generally form heterogeneous forest cover and sparse woodlands with mountainous terrain have been largely neglected in AGB studies (Cloude et al., 2001; 2008; Lumsdon et al., 2005; 2008; Erxue et al., 2009, Tan et al., 2010; 2011a; 2011b; 2011c; 2011d). Since mountain forests constitute approximately 28% of the total global forest area (Price and Butt, 2000), a better understanding of the slope effects is of primary importance in AGB estimation. The main objective of this research is to estimate AGB in the aforementioned forest in Glen Affric, Scotland using both SAR and LiDAR data. Two types of Synthetic Aperture Radar (SAR) data were used in this research: TerraSAR-X, operating at X-band and ALOS PALSAR, operating at L-band, both are fully polarimetric. The former data was acquired on 13 April 2010 and of the latter, two scenes were acquired on 17 April 2007 and 08 June 2009. Airborne LiDAR data were acquired on 09 June 2007. Two field measurement campaigns were carried out, one of which was done from winter 2006 to spring 2007 where physical parameters of trees in 170 circular plots were measured by the Forestry Commission team. Another intensive fieldwork was organised by myself with the help of my fellow colleagues and it comprised of tree measurement in two transects of 200m x 50m at a relatively flat and dense plantation forest and 400m x 50m at hilly and sparse semi-natural forest. AGB is estimated for both the transects to investigate the effectiveness of the proposed method at plot-level. This thesis evaluates the capability of polarimetric Synthetic Aperture Radar data for AGB estimation by investigating the relationship between the SAR backscattering coefficient and AGB and also the relationship between the decomposed scattering mechanisms and AGB. Due to the terrain and heterogeneous nature of the forests, the result from the backscatter-AGB analysis show that these forests present a challenge for simple AGB estimation. As an alternative, polarimetric techniques were applied to the problem by decomposing the backscattering information into scattering mechanisms based on the approach by Yamaguchi (2005; 2006), which are then regressed to the field measured AGB. Of the two data sets, ALOS PALSAR demonstrates a better estimation capacity for AGB estimation than TerraSAR-X. The AGB estimated results from SAR data are compared with AGB derived from LiDAR data. Since tree height is often correlated with AGB (Onge et al., 2008; Gang et al., 2010), the effectiveness of the tree height retrieval from LiDAR is evaluated as an indicator of AGB. Tree delineation was performed before AGB of individual trees were calculated allometrically. Results were validated by comparison to the fieldwork data. The amount of overestimation varies across the different canopy conditions. These results give some indication of when to use LiDAR or SAR to retrieve forest AGB. LiDAR is able to estimate AGB with good accuracy and the R2 value obtained is 0.97 with RMSE of 14.81 ton/ha. The R2 and RMSE obtained for TerraSAR-X are 0.41 and 28.5 ton/ha, respectively while for ALOS PALSAR data are 0.70 and 23.6 ton/ha, respectively. While airborne LiDAR data with very accurate height measurement and consequent three-dimensional (3D) stand profiles which allows investigation into the relationship between height, number density and AGB, it's limited to small coverage area, or large areas but at large cost. ALOS PALSAR, on the other hand, can cover big coverage area but it provide a lower resolution, hence, lower estimation accuracy

    Remote sensing of mangrove composition and structure in the Galapagos Islands

    Get PDF
    Mangroves are unique inter-tidal ecosystems that provide valuable ecosystem goods and services. This dissertation investigates new methods of characterizing mangrove forests using remote sensing with implications for mapping and modeling ecosystem goods and services. Specifically, species composition, leaf area, and canopy height are investigated for mangroves in the Galapagos Islands. The Galapagos Islands serve as an interesting case study where environmental conditions are highly variable over short distances producing a wide range of mangrove composition and structure to examine. This dissertation reviews previous mangrove remote sensing studies and seeks to address missing gaps. Specifically, this research seeks to examine pixel and object-based methods for mapping mangrove species, investigate the usefulness of spectral and spatial metrics to estimate leaf area, and compare existing global digital surface models with a digital surface model extracted from new very high resolution imagery. The major findings of this research include the following: 1) greater spectral separability between true mangrove and mangrove associate species using object-based image analysis compared to pixel-based analysis, but a lack of separability between individual mangrove species, 2) the demonstrated necessity for novel machine-learning classification techniques rather than traditional clustering classification algorithms, 3) significant but weak relationships between spectral vegetation indices and leaf area, 4) moderate to strong relationships between grey-level co-occurrence matrix image texture and leaf area at the individual species level, 5) similar accuracy between a very high resolution stereo optical digital surface model a coarse resolution InSAR product to estimate canopy height with improved accuracy using a hybrid model of these two products. The results demonstrate advancements in remote sensing technology and technique, but further challenges remain before these methods can be applied to monitoring and modeling applications. Based on these results, future research should focus on emerging technologies such as hyperspectral, very high resolution InSAR, and LiDAR to characterize mangrove forest composition and structure

    Retrieving secondary forest aboveground biomass from polarimetric ALOS-2 PALSAR-2 data in the Brazilian Amazon

    Get PDF
    Secondary forests (SF) are important carbon sinks, removing CO2 from the atmosphere through the photosynthesis process and storing photosynthates in their aboveground live biomass (AGB). This process occurring at large-scales partially counteracts C emissions from land-use change, playing, hence, an important role in the global carbon cycle. The absorption rates of carbon in these forests depend on forest physiology, controlled by environmental and climatic conditions, as well as on the past land use, which is rarely considered for retrieving AGB from remotely sensed data. In this context, the main goal of this study is to evaluate the potential of polarimetric (quad-pol) ALOS-2 PALSAR-2 data for estimating AGB in a SF area. Land-use was assessed through Landsat time-series to extract the SF age, period of active land-use (PALU), and frequency of clear cuts (FC) to randomly select the SF plots. A chronosequence of 42 SF plots ranging 3-28 years (20 ha) near the Tapajós National Forest in Pará state was surveyed to quantifying AGB growth. The quad-pol data was explored by testing two regression methods, including non-linear (NL) and multiple linear regression models (MLR).We also evaluated the influence of the past land-use in the retrieving AGB through correlation analysis. The results showed that the biophysical variables were positively correlated with the volumetric scattering, meaning that SF areas presented greater volumetric scattering contribution with increasing forest age. Mean diameter, mean tree height, basal area, species density, and AGB were significant and had the highest Pearson coefficients with the Cloude decomposition (λ3), which in turn, refers to the volumetric contribution backscattering from cross-polarization (HV) (ρ = 0.57-0.66, p-value < 0.001). On the other hand, the historical use (PALU and FC) showed the highest correlation with angular decompositions, being the Touzi target phase angle the highest correlation (Φs) (ρ = 0.37 and ρ = 0.38, respectively). The combination of multiple prediction variables with MLR improved the AGB estimation by 70% comparing to the NL model (R2 adj. = 0.51; RMSE = 38.7 Mg ha-1) bias = 2.1 ± 37.9 Mg ha-1 by incorporate the angular decompositions, related to historical use, and the contribution volumetric scattering, related to forest structure, in the model. The MLR uses six variables, whose selected polarimetric attributes were strongly related with different structural parameters such as the mean forest diameter, basal area, and the mean forest tree height, and not with the AGB as was expected. The uncertainty was estimated to be 18.6% considered all methodological steps of the MLR model. This approach helped us to better understand the relationship between parameters derived from SAR data and the forest structure and its relation to the growth of the secondary forest after deforestation events
    corecore