1,931 research outputs found

    Survey of ETA prediction methods in public transport networks

    Get PDF
    The majority of public transport vehicles are fitted with Automatic Vehicle Location (AVL) systems generating a continuous stream of data. The availability of this data has led to a substantial body of literature addressing the development of algorithms to predict Estimated Times of Arrival (ETA). Here research literature reporting the development of ETA prediction systems specific to busses is reviewed to give an overview of the state of the art. Generally, reviews in this area categorise publications according to the type of algorithm used, which does not allow an objective comparison. Therefore this survey will categorise the reviewed publications according to the input data used to develop the algorithm. The review highlighted inconsistencies in reporting standards of the literature. The inconsistencies were found in the varying measurements of accuracy preventing any comparison and the frequent omission of a benchmark algorithm. Furthermore, some publications were lacking in overall quality. Due to these highlighted issues, any objective comparison of prediction accuracies is impossible. The bus ETA research field therefore requires a universal set of standards to ensure the quality of reported algorithms. This could be achieved by using benchmark datasets or algorithms and ensuring the publication of any code developed

    Predicting Bus Travel Time with Hybrid Incomplete Data – A Deep Learning Approach

    Get PDF
    The application of predicting bus travel time with real-time information, including Global Positioning System (GPS) and Electronic Smart Card (ESC) data is effective to advance the level of service by reducing wait time and improving schedule adherence. However, missing information in the data stream is inevitable for various reasons, which may seriously affect prediction accuracy. To address this problem, this research proposes a Long Short-Term Memory (LSTM) model to predict bus travel time, considering incomplete data. To improve the model performance in terms of accuracy and efficiency, a Genetic Algorithm (GA) is developed and applied to optimise hyperparameters of the LSTM model. The model performance is assessed by simulation and real-world data. The results suggest that the proposed approach with hybrid data outperforms the approaches with ESC and GPS data individually. With GA, the proposed model outperforms the traditional one in terms of lower Root Mean Square Error (RMSE). The prediction accuracy with various combinations of ESC and GPS data is assessed. The results can serve as a guideline for transit agencies to deploy GPS devices in a bus fleet considering the market penetration of ESC

    Inferring accurate bus trajectories from noisy estimated arrival time records

    Get PDF
    National Research Foundation (NRF) Singapore under its International Research Centres in Singapore Funding Initiativ

    LocateMyBus: IoT-Driven Smart Bus Transit

    Get PDF
    Uncertainty of traffic in cities makes it difficult for metropolitan buses to adhere to predetermined schedules, making it strenuous for commuters to plan travel reliably. The proposed LocateMyBus system leverages Internet of Things(IoT) set-ups at bus stops and buses, and Machine Learning(ML) to assuage this uncertainty by allowing commuters to track live-runningstatus of buses, disseminate tentative and live-status to commuters through Public Announcement(PA) systems at bus-stops and a web-application interface. The schedule prediction module provides a tentative schedule of buses with stop-wise arrival times estimated using ML based on historic and real-time route data. Arrival times of two bus-routes in the Massachusetts Bay Area were collected for a period of four months by periodically querying its real-time General Transit Feed Systems(GTFS). This dataset was used to train and validate the proposed ML methods. The IoT system was modeled on Proteus, and validated with a miniature prototype. LocateMyBus is proposed as a step forward toward minimal intervention algorithmic set-ups to ease the uncertainty associated with bus commute in cities. It enables commuters to track live running status and avail ML-predicted tentative schedules. Furthermore, it eradicates the computation requirements of GPS-based systems, whilst ensuring stop-level tracking granularity. LocateMyBus\u27s ability to log bus arrival times at each stop paves the way to building real-time GTFSs

    Multi-headed self-attention mechanism-based Transformer model for predicting bus travel times across multiple bus routes using heterogeneous datasets

    Get PDF
    Bus transit is a crucial component of transportation networks, especially in urban areas. Bus agencies must enhance the quality of their real-time bus travel information service to serve their passengers better and attract more travelers. Various models have recently been developed for estimating bus travel times to increase the quality of real-time information service. However, most are concentrated on smaller road networks due to their generally subpar performance in densely populated urban regions on a vast network and failure to produce good results with long-range dependencies. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database and the vehicle probe data. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. This study developed a multi-headed self-attention mechanism-based Univariate Transformer neural network to predict the mean vehicle travel times for different hours of the day for multiple stations across multiple routes. In addition, we developed Multivariate GRU and LSTM neural network models for our research to compare the prediction accuracy and comprehend the robustness of the Transformer model. To validate the Transformer Model's performance more in comparison to the GRU and LSTM models, we employed the Historical Average Model and XGBoost model as benchmark models. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. Only the historical average bus travel time was used as the input parameter for the Transformer model. Other features, including spatial and temporal information, volatility measures (e.g., the standard deviation and variance of travel time), dwell time, expected travel time, jam factors, hours of a day, etc., were captured from our dataset. These parameters were employed to develop the Multivariate GRU and LSTM models. The model's performance was evaluated based on a performance metric called Mean Absolute Percentage Error (MAPE). The results showed that the Transformer model outperformed other models for one-hour ahead prediction having minimum and mean MAPE values of 4.32 percent and 8.29 percent, respectively. We also investigated that the Transformer model performed the best during different traffic conditions (e.g., peak and off-peak hours). Furthermore, we also displayed the model computation time for the prediction; XGBoost was found to be the quickest, with a prediction time of 6.28 seconds, while the Transformer model had a prediction time of 7.42 seconds. The study's findings demonstrate that the Transformer model showed its applicability for real-time travel time prediction and guaranteed the high quality of the predictions produced by the model in the context of a complicated extensive transportation network in high-density urban areas and capturing long-range dependencies.Includes bibliographical references
    corecore