30,989 research outputs found

    Binary Classifier Calibration using an Ensemble of Near Isotonic Regression Models

    Full text link
    Learning accurate probabilistic models from data is crucial in many practical tasks in data mining. In this paper we present a new non-parametric calibration method called \textit{ensemble of near isotonic regression} (ENIR). The method can be considered as an extension of BBQ, a recently proposed calibration method, as well as the commonly used calibration method based on isotonic regression. ENIR is designed to address the key limitation of isotonic regression which is the monotonicity assumption of the predictions. Similar to BBQ, the method post-processes the output of a binary classifier to obtain calibrated probabilities. Thus it can be combined with many existing classification models. We demonstrate the performance of ENIR on synthetic and real datasets for the commonly used binary classification models. Experimental results show that the method outperforms several common binary classifier calibration methods. In particular on the real data, ENIR commonly performs statistically significantly better than the other methods, and never worse. It is able to improve the calibration power of classifiers, while retaining their discrimination power. The method is also computationally tractable for large scale datasets, as it is O(NlogN)O(N \log N) time, where NN is the number of samples

    Estimating Uncertainty Online Against an Adversary

    Full text link
    Assessing uncertainty is an important step towards ensuring the safety and reliability of machine learning systems. Existing uncertainty estimation techniques may fail when their modeling assumptions are not met, e.g. when the data distribution differs from the one seen at training time. Here, we propose techniques that assess a classification algorithm's uncertainty via calibrated probabilities (i.e. probabilities that match empirical outcome frequencies in the long run) and which are guaranteed to be reliable (i.e. accurate and calibrated) on out-of-distribution input, including input generated by an adversary. This represents an extension of classical online learning that handles uncertainty in addition to guaranteeing accuracy under adversarial assumptions. We establish formal guarantees for our methods, and we validate them on two real-world problems: question answering and medical diagnosis from genomic data
    corecore