28,477 research outputs found

    A mechanistic model (BCC-PSSICO) to predict changes in the hydraulic properties for bio-amended variably saturated soils

    Get PDF
    This is the peer reviewed version of the following article: [Carles Brangarí, A., X. Sanchez-Vila, A. Freixa, A. M. Romaní, S. Rubol, and D. Fernàndez-Garcia (2017), A mechanistic model (BCC-PSSICO) to predict changes in the hydraulic properties for bio-amended variably saturated soils, Water Resour. Res., 53, 93–109, doi:10.1002/2015WR018517], which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/2015WR018517/abstract. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.The accumulation of biofilms in porous media is likely to influence the overall hydraulic properties and, consequently, a sound understanding of the process is required for the proper design and management of many technological applications. In order to bring some light into this phenomenon we present a mechanistic model to study the variably saturated hydraulic properties of bio-amended soils. Special emphasis is laid on the distribution of phases at pore-scale and the mechanisms to retain and let water flow through, providing valuable insights into phenomena behind bioclogging. Our approach consists in modeling the porous media as an ensemble of capillary tubes, obtained from the biofilm-free water retention curve. This methodology is extended by the incorporation of a biofilm composed of bacterial cells and extracellular polymeric substances (EPS). Moreover, such a microbial consortium displays a channeled geometry that shrinks/swells with suction. Analytical equations for the volumetric water content and the relative permeability can then be derived by assuming that biomass reshapes the pore space following specific geometrical patterns. The model is discussed by using data from laboratory studies and other approaches already existing in the literature. It can reproduce (i) displacements of the retention curve toward higher saturations and (ii) permeability reductions of distinct orders of magnitude. Our findings also illustrate how even very small amounts of biofilm may lead to significant changes in the hydraulic properties. We, therefore, state the importance of accounting for the hydraulic characteristics of biofilms and for a complex/more realistic geometry of colonies at the pore-scale.Peer ReviewedPostprint (author's final draft

    Predicting floods in a large karst river basin by coupling PERSIANN-CCS QPEs with a physically based distributed hydrological model

    Get PDF
    In general, there are no long-term meteorological or hydrological data available for karst river basins. The lack of rainfall data is a great challenge that hinders the development of hydrological models. Quantitative precipitation estimates (QPEs) based on weather satellites offer a potential method by which rainfall data in karst areas could be obtained. Furthermore, coupling QPEs with a distributed hydrological model has the potential to improve the precision of flood predictions in large karst watersheds. Estimating precipitation from remotely sensed information using an artificial neural network-cloud classification system (PERSIANN-CCS) is a type of QPE technology based on satellites that has achieved broad research results worldwide. However, only a few studies on PERSIANN-CCS QPEs have occurred in large karst basins, and the accuracy is generally poor in terms of practical applications. This paper studied the feasibility of coupling a fully physically based distributed hydrological model, i.e., the Liuxihe model, with PERSIANN-CCS QPEs for predicting floods in a large river basin, i.e., the Liujiang karst river basin, which has a watershed area of 58 270 km-2, in southern China. The model structure and function require further refinement to suit the karst basins. For instance, the sub-basins in this paper are divided into many karst hydrology response units (KHRUs) to ensure that the model structure is adequately refined for karst areas. In addition, the convergence of the underground runoff calculation method within the original Liuxihe model is changed to suit the karst water-bearing media, and the Muskingum routing method is used in the model to calculate the underground runoff in this study. Additionally, the epikarst zone, as a distinctive structure of the KHRU, is carefully considered in the model. The result of the QPEs shows that compared with the observed precipitation measured by a rain gauge, the distribution of precipitation predicted by the PERSIANN-CCS QPEs was very similar. However, the quantity of precipitation predicted by the PERSIANN-CCS QPEs was smaller. A post-processing method is proposed to revise the products of the PERSIANN-CCS QPEs. The karst flood simulation results show that coupling the post-processed PERSIANN-CCS QPEs with the Liuxihe model has a better performance relative to the result based on the initial PERSIANN-CCS QPEs. Moreover, the performance of the coupled model largely improves with parameter re-optimization via the post-processed PERSIANN-CCS QPEs. The average values of the six evaluation indices change as follows: the Nash-Sutcliffe coefficient increases by 14 %, the correlation coefficient increases by 15 %, the process relative error decreases by 8 %, the peak flow relative error decreases by 18 %, the water balance coefficient increases by 8 %, and the peak flow time error displays a 5 h decrease. Among these parameters, the peak flow relative error shows the greatest improvement; thus, these parameters are of page1506 the greatest concern for flood prediction. The rational flood simulation results from the coupled model provide a great practical application prospect for flood prediction in large karst river basins

    Numerical analysis of rapid drawdown: applications in real cases

    Get PDF
    In this study, rapid drawdown scenarios were analyzed by means of numerical examples as well as modeling of real cases with in situ measurements. The aim of the study was to evaluate different approaches available for calculating pore water pressure distributions during and after a drawdown. To do that, a single slope subjected to a drawdown was first analyzed under different calculation alternatives, and numerical results were discussed. Simple methods, such as undrained analysis and pure flow analysis, implicitly assuming a rigid soil skeleton, lead to significant errors in pore water pressure distributions when compared with coupled flow-deformation analysis. A similar analysis was performed for the upstream slope of the Glen Shira Dam, Scotland, and numerical results were compared with field measurements during a controlled drawdown. Field records indicate that classical undrained calculations are conservative but unrealistic. Then, a recent case of a major landslide triggered by a rapid drawdown in a reservoir was interpreted. A key aspect of the case was the correct characterization of permeability of a representative soil profile. This was achieved by combining laboratory test results and a back analysis of pore water pressure time records during a period of reservoir water level fluctuations. The results highlight the difficulty of predicting whether the pore water pressure is overestimated or underestimated when using simplified approaches, and it is concluded that predicting the pore water pressure distribution in a slope after a rapid drawdown requires a coupled flow-deformation analysis in saturated and unsaturated porous media.Peer ReviewedPostprint (published version

    Surface Erosion and Sedimentation Associated with Forest Land Use in Interior Alaska

    Get PDF
    Completion reportThe magnitude of sheet-rill erosion associated with various landscape manipulations is presented. The Universal Soil Loss Equation's usefulness for predicting annual sheet-rill erosion within interior Alaska is confirmed. Investigations of sheet-rill erosion indicate that removing the trees from forested areas with only minor ground cover disturbance did not increase erosion. Removing the ground cover, however, increased erosion 18 times above that on forested areas. Erosion is substantially reduced when disturbed areas are covered with straw mulch and fertilizer. Comparison of the actual erosion and the quantity of erosion predicted with the Universal Soil Loss Equation indicates that the equation overestimates annual erosion by an average of 21 percent. It overestimates individual storm erosion by an average of 174 percent. Data are also presented concerning sheet-rill erosion in a permafrost trail, distribution of the rainfall erosion index, and suggested cover and management factor values.This work was supported by the Institute of Northern Forestry, Pacific Northwest Forest and Range Experiment Station, USDA. The Institute of Water Resources, University of Alaska, provided facilities for this research

    Regional assessment of groundwater recharge in the lower Mekong Basin

    Get PDF
    Groundwater recharge remains almost totally unknown across the Mekong River Basin, hindering the evaluation of groundwater potential for irrigation. A regional regression model was developed to map groundwater recharge across the Lower Mekong Basin where agricultural water demand is increasing, especially during the dry season. The model was calibrated with baseflow computed with the local-minimum flow separation method applied to streamflow recorded in 65 unregulated sub-catchments since 1951. Our results, in agreement with previous local studies, indicate that spatial variations in groundwater recharge are predominantly controlled by the climate (rainfall and evapotranspiration) while aquifer characteristics seem to play a secondary role at this regional scale. While this analysis suggests large scope for expanding agricultural groundwater use, the map derived from this study provides a simple way to assess the limits of groundwater-fed irrigation development. Further data measurements to capture local variations in hydrogeology will be required to refine the evaluation of recharge rates to support practical implementations

    Contributions to predicting contaminant leaching from secondary materials used in roads

    Get PDF
    Slags, coal ashes, and other secondary materials can be used in road construction. Both traditional and secondary materials used in roads may contain contaminants that may leach and pollute the groundwater. The goal of this research was to further the understanding of leaching and transport of contaminants from pavement materials. Towards this goal, a new probabilistic framework was introduced which provided a structured guidance for selecting the appropriate model, incorporating uncertainty, variability, and expert opinion, and interpreting results for decision making. In addition to the framework, specific contributions were made in pavement and embankment hydrology and reactive transport, Bayesian statistics, and aqueous geochemistry of leaching. Contributions on water movement and reactive transport in highways included probabilistic prediction of leaching in an embankment, and scenario analyses of leaching and transport in pavements using HYDRUS2D, a contaminant fate and transport model. Water flow in a Minnesota highway embankment was replicated by Bayesian calibration of hydrological parameters against water content data. Extent of leaching of Cd from a coal fly ash was estimated. Two dimensional simulations of various scenarios showed that salts in the base layer of pavements are depleted within the first year whereas the metals may never reach the groundwater if the pavement is built on adsorbing soils. Aqueous concentrations immediately above the groundwater estimated for intact and damaged pavements can be used for regulators to determine the acceptability of various recycled materials. Contributions in the aqueous geochemistry of leaching included a new modeling approach for leaching of anions and cations from complex matrices such as weathered steel slag. The novelty of the method was its simultaneous inclusion of sorption and solubility controls for multiple analytes. The developed model showed that leaching of SO4, Cr, As, Si, Ca, Mg, and V were controlled by corresponding soluble solids. Leaching of Pb was controlled by Pb(VO4)3 solubility at low pHs and by surface precipitation reactions at high pHs. Leaching of Cd and Zn were controlled by surface complexation and surface precipitation, respectively

    Predicting soil erosion after land use changes for irrigating agriculture in a large reservoir of southern Portugal

    Get PDF
    The construction of the Alqueva reservoir in a semi-arid Mediterranean landscape brought new opportunities for irrigated farming. Land use changes and climate change may alter the risk of soil erosion that was not predicted in the initial development plans and decrease the lifetime of the investment. A comprehensive methodology that integrates the Revised Universal Soil Loss Equation (RUSLE) and geographic information system was adopted to study the effect on soil erosion of different land-uses of the Alqueva reservoir region. Analysing the soil erosion of each land-use it was obtained the following land use erosion vulnerability: Olive orchard>Vineyard>Montado>Alfalfa. The strong erosion variances that were observed in the study area show the importance of locating the 'hot spots' of soil erosion. Simulated scenarios for the entire area can be used as a basis for site-specific soil conservation plans, to promote sustainable land management practices and to facilitate localized erosion control practices and environmentally friendly farming. (C) 2015 The Authors. Published by Elsevier B.V

    Identification of Optimal Locations for Sampling Ground Water for Pesticides in the Mississippi Delta Region of Eastern Arkansas

    Get PDF
    Concerns about the presence of pesticides in the Mississippi River Valley alluvial aquifer in the Arkansas Delta have generated the need to develop a map of ground water vulnerability for this region comprised of approximately 10 million acres. Based on the availability of digital data and the scale of this study. we used a modified Pesticide DRASTIC model in a GRASS GIS environment to identify areas that were physically more sensitive to pesticide contamination than other areas within the Delta. Spatial distribution of pesticide loading was estimated from pesticide application rates in different crops and crop distribution map interpreted from satellite imagery. Relative ground water vulnerability index was expressed as a product of aquifer sensitivity index and pesticide loading index. The resulting map showing the spatial distribution of relative ground water vulnerability index values was intended for use in selecting optimal locations for sampling ground water for pesticides in the Arkansas Delta and for aid in implementing the Arkansas Agricultural Chemical Ground-Water Management Plan. The most sensitive areas in the Delta are distributed mostly along major streams where a combination of shallow depth to ground water, thin confining unit, permeable soils, and high recharge rate usually prevails. It is also in many of these areas where large acres of crops are grown, and pesticides are used. Consequently, many areas along major streams are also most vulnerable. These vulnerable areas may be targeted by planners and governmental agencies for further detailed evaluation. Uncertainties in the methodology and mapped input data, plus the dynamic nature of model factors, require continued and improved efforts in ground water vulnerability assessment for the Arkansas Delta

    Distribution of contaminants in the environment and wildlife habitat use: a case study with lead and waterfowl on the Upper Texas Coast

    Get PDF
    The magnitude and distribution of lead contamination remain unknown in wetland systems. Anthropogenic deposition of lead may be contributing to negative population-level effects in waterfowl and other organisms that depend on dynamic wetland habitats, particularly if they are unable to detect and differentiate levels of environmental contamination by lead. Detection of lead and behavioral response to elevated lead levels by waterfowl is poorly understood, but necessary to characterize the risk of lead-contaminated habitats. We measured the relationship between lead contamination of wetland soils and habitat use by mottled ducks (Anas fulvigula) on the Upper Texas Coast, USA. Mottled ducks have historically experienced disproportionate negative effects from lead exposure, and exhibit a unique nonmigratory life history that increases risk of exposure when inhabiting contaminated areas. We used spatial interpolation to estimate lead in wetland soils of the Texas Chenier Plain National Wildlife Refuge Complex. Soil lead levels varied across the refuge complex (0.01–1085.51 ppm), but greater lead concentrations frequently corresponded to areas with high densities of transmittered mottled ducks. We used soil lead concentration data and MaxENT species distribution models to quantify relationships among various habitat factors and locations of mottled ducks. Use of habitats with greater lead concentration increased during years of a major disturbance. Because mottled ducks use habitats with high concentrations of lead during periods of stress, have greater risk of exposure following major disturbance to the coastal marsh system, and no innate mechanism for avoiding the threat of lead exposure, we suggest the potential presence of an ecological trap of quality habitat that warrants further quantification at a population scale for mottled ducks
    • …
    corecore