1,556 research outputs found

    Prediction and Description of Near-Future Activities in Video

    Full text link
    Most of the existing works on human activity analysis focus on recognition or early recognition of the activity labels from complete or partial observations. Similarly, existing video captioning approaches focus on the observed events in videos. Predicting the labels and the captions of future activities where no frames of the predicted activities have been observed is a challenging problem, with important applications that require anticipatory response. In this work, we propose a system that can infer the labels and the captions of a sequence of future activities. Our proposed network for label prediction of a future activity sequence is similar to a hybrid Siamese network with three branches where the first branch takes visual features from the objects present in the scene, the second branch takes observed activity features and the third branch captures the last observed activity features. The predicted labels and the observed scene context are then mapped to meaningful captions using a sequence-to-sequence learning-based method. Experiments on three challenging activity analysis datasets and a video description dataset demonstrate that both our label prediction framework and captioning framework outperform the state-of-the-arts.Comment: 14 pages, 4 figures, 14 table

    TennisVid2Text: Fine-grained Descriptions for Domain Specific Videos

    Full text link
    Automatically describing videos has ever been fascinating. In this work, we attempt to describe videos from a specific domain - broadcast videos of lawn tennis matches. Given a video shot from a tennis match, we intend to generate a textual commentary similar to what a human expert would write on a sports website. Unlike many recent works that focus on generating short captions, we are interested in generating semantically richer descriptions. This demands a detailed low-level analysis of the video content, specially the actions and interactions among subjects. We address this by limiting our domain to the game of lawn tennis. Rich descriptions are generated by leveraging a large corpus of human created descriptions harvested from Internet. We evaluate our method on a newly created tennis video data set. Extensive analysis demonstrate that our approach addresses both semantic correctness as well as readability aspects involved in the task.Comment: BMVC 201

    SoDeep: a Sorting Deep net to learn ranking loss surrogates

    Full text link
    Several tasks in machine learning are evaluated using non-differentiable metrics such as mean average precision or Spearman correlation. However, their non-differentiability prevents from using them as objective functions in a learning framework. Surrogate and relaxation methods exist but tend to be specific to a given metric. In the present work, we introduce a new method to learn approximations of such non-differentiable objective functions. Our approach is based on a deep architecture that approximates the sorting of arbitrary sets of scores. It is trained virtually for free using synthetic data. This sorting deep (SoDeep) net can then be combined in a plug-and-play manner with existing deep architectures. We demonstrate the interest of our approach in three different tasks that require ranking: Cross-modal text-image retrieval, multi-label image classification and visual memorability ranking. Our approach yields very competitive results on these three tasks, which validates the merit and the flexibility of SoDeep as a proxy for sorting operation in ranking-based losses.Comment: Accepted to CVPR 201

    A Survey on Content-Aware Video Analysis for Sports

    Full text link
    Sports data analysis is becoming increasingly large-scale, diversified, and shared, but difficulty persists in rapidly accessing the most crucial information. Previous surveys have focused on the methodologies of sports video analysis from the spatiotemporal viewpoint instead of a content-based viewpoint, and few of these studies have considered semantics. This study develops a deeper interpretation of content-aware sports video analysis by examining the insight offered by research into the structure of content under different scenarios. On the basis of this insight, we provide an overview of the themes particularly relevant to the research on content-aware systems for broadcast sports. Specifically, we focus on the video content analysis techniques applied in sportscasts over the past decade from the perspectives of fundamentals and general review, a content hierarchical model, and trends and challenges. Content-aware analysis methods are discussed with respect to object-, event-, and context-oriented groups. In each group, the gap between sensation and content excitement must be bridged using proper strategies. In this regard, a content-aware approach is required to determine user demands. Finally, the paper summarizes the future trends and challenges for sports video analysis. We believe that our findings can advance the field of research on content-aware video analysis for broadcast sports.Comment: Accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology (TCSVT

    Learning semantic sentence representations from visually grounded language without lexical knowledge

    Get PDF
    Current approaches to learning semantic representations of sentences often use prior word-level knowledge. The current study aims to leverage visual information in order to capture sentence level semantics without the need for word embeddings. We use a multimodal sentence encoder trained on a corpus of images with matching text captions to produce visually grounded sentence embeddings. Deep Neural Networks are trained to map the two modalities to a common embedding space such that for an image the corresponding caption can be retrieved and vice versa. We show that our model achieves results comparable to the current state-of-the-art on two popular image-caption retrieval benchmark data sets: MSCOCO and Flickr8k. We evaluate the semantic content of the resulting sentence embeddings using the data from the Semantic Textual Similarity benchmark task and show that the multimodal embeddings correlate well with human semantic similarity judgements. The system achieves state-of-the-art results on several of these benchmarks, which shows that a system trained solely on multimodal data, without assuming any word representations, is able to capture sentence level semantics. Importantly, this result shows that we do not need prior knowledge of lexical level semantics in order to model sentence level semantics. These findings demonstrate the importance of visual information in semantics

    Semantic speech retrieval with a visually grounded model of untranscribed speech

    Full text link
    There is growing interest in models that can learn from unlabelled speech paired with visual context. This setting is relevant for low-resource speech processing, robotics, and human language acquisition research. Here we study how a visually grounded speech model, trained on images of scenes paired with spoken captions, captures aspects of semantics. We use an external image tagger to generate soft text labels from images, which serve as targets for a neural model that maps untranscribed speech to (semantic) keyword labels. We introduce a newly collected data set of human semantic relevance judgements and an associated task, semantic speech retrieval, where the goal is to search for spoken utterances that are semantically relevant to a given text query. Without seeing any text, the model trained on parallel speech and images achieves a precision of almost 60% on its top ten semantic retrievals. Compared to a supervised model trained on transcriptions, our model matches human judgements better by some measures, especially in retrieving non-verbatim semantic matches. We perform an extensive analysis of the model and its resulting representations.Comment: 10 pages, 3 figures, 5 tables; accepted to the IEEE/ACM Transactions on Audio, Speech and Language Processin

    mAnI: Movie Amalgamation using Neural Imitation

    Full text link
    Cross-modal data retrieval has been the basis of various creative tasks performed by Artificial Intelligence (AI). One such highly challenging task for AI is to convert a book into its corresponding movie, which most of the creative film makers do as of today. In this research, we take the first step towards it by visualizing the content of a book using its corresponding movie visuals. Given a set of sentences from a book or even a fan-fiction written in the same universe, we employ deep learning models to visualize the input by stitching together relevant frames from the movie. We studied and compared three different types of setting to match the book with the movie content: (i) Dialog model: using only the dialog from the movie, (ii) Visual model: using only the visual content from the movie, and (iii) Hybrid model: using the dialog and the visual content from the movie. Experiments on the publicly available MovieBook dataset shows the effectiveness of the proposed models.Comment: Accepted in ML4Creativity workshop in KDD 2017. Preprin

    Attention-based Natural Language Person Retrieval

    Full text link
    Following the recent progress in image classification and captioning using deep learning, we develop a novel natural language person retrieval system based on an attention mechanism. More specifically, given the description of a person, the goal is to localize the person in an image. To this end, we first construct a benchmark dataset for natural language person retrieval. To do so, we generate bounding boxes for persons in a public image dataset from the segmentation masks, which are then annotated with descriptions and attributes using the Amazon Mechanical Turk. We then adopt a region proposal network in Faster R-CNN as a candidate region generator. The cropped images based on the region proposals as well as the whole images with attention weights are fed into Convolutional Neural Networks for visual feature extraction, while the natural language expression and attributes are input to Bidirectional Long Short- Term Memory (BLSTM) models for text feature extraction. The visual and text features are integrated to score region proposals, and the one with the highest score is retrieved as the output of our system. The experimental results show significant improvement over the state-of-the-art method for generic object retrieval and this line of research promises to benefit search in surveillance video footage.Comment: CVPR 2017 Workshop (vision meets cognition

    Learning to discover and localize visual objects with open vocabulary

    Full text link
    To alleviate the cost of obtaining accurate bounding boxes for training today's state-of-the-art object detection models, recent weakly supervised detection work has proposed techniques to learn from image-level labels. However, requiring discrete image-level labels is both restrictive and suboptimal. Real-world "supervision" usually consists of more unstructured text, such as captions. In this work we learn association maps between images and captions. We then use a novel objectness criterion to rank the resulting candidate boxes, such that high-ranking boxes have strong gradients along all edges. Thus, we can detect objects beyond a fixed object category vocabulary, if those objects are frequent and distinctive enough. We show that our objectness criterion improves the proposed bounding boxes in relation to prior weakly supervised detection methods. Further, we show encouraging results on object detection from image-level captions only

    Visual Relationship Detection using Scene Graphs: A Survey

    Full text link
    Understanding a scene by decoding the visual relationships depicted in an image has been a long studied problem. While the recent advances in deep learning and the usage of deep neural networks have achieved near human accuracy on many tasks, there still exists a pretty big gap between human and machine level performance when it comes to various visual relationship detection tasks. Developing on earlier tasks like object recognition, segmentation and captioning which focused on a relatively coarser image understanding, newer tasks have been introduced recently to deal with a finer level of image understanding. A Scene Graph is one such technique to better represent a scene and the various relationships present in it. With its wide number of applications in various tasks like Visual Question Answering, Semantic Image Retrieval, Image Generation, among many others, it has proved to be a useful tool for deeper and better visual relationship understanding. In this paper, we present a detailed survey on the various techniques for scene graph generation, their efficacy to represent visual relationships and how it has been used to solve various downstream tasks. We also attempt to analyze the various future directions in which the field might advance in the future. Being one of the first papers to give a detailed survey on this topic, we also hope to give a succinct introduction to scene graphs, and guide practitioners while developing approaches for their applications
    • …
    corecore