14,332 research outputs found

    Deep Character-Level Click-Through Rate Prediction for Sponsored Search

    Full text link
    Predicting the click-through rate of an advertisement is a critical component of online advertising platforms. In sponsored search, the click-through rate estimates the probability that a displayed advertisement is clicked by a user after she submits a query to the search engine. Commercial search engines typically rely on machine learning models trained with a large number of features to make such predictions. This is inevitably requires a lot of engineering efforts to define, compute, and select the appropriate features. In this paper, we propose two novel approaches (one working at character level and the other working at word level) that use deep convolutional neural networks to predict the click-through rate of a query-advertisement pair. Specially, the proposed architectures only consider the textual content appearing in a query-advertisement pair as input, and produce as output a click-through rate prediction. By comparing the character-level model with the word-level model, we show that language representation can be learnt from scratch at character level when trained on enough data. Through extensive experiments using billions of query-advertisement pairs of a popular commercial search engine, we demonstrate that both approaches significantly outperform a baseline model built on well-selected text features and a state-of-the-art word2vec-based approach. Finally, by combining the predictions of the deep models introduced in this study with the prediction of the model in production of the same commercial search engine, we significantly improve the accuracy and the calibration of the click-through rate prediction of the production system.Comment: SIGIR2017, 10 page

    Eye-tracking as a measure of cognitive effort for post-editing of machine translation

    Get PDF
    The three measurements for post-editing effort as proposed by Krings (2001) have been adopted by many researchers in subsequent studies and publications. These measurements comprise temporal effort (the speed or productivity rate of post-editing, often measured in words per second or per minute at the segment level), technical effort (the number of actual edits performed by the post-editor, sometimes approximated using the Translation Edit Rate metric (Snover et al. 2006), again usually at the segment level), and cognitive effort. Cognitive effort has been measured using Think-Aloud Protocols, pause measurement, and, increasingly, eye-tracking. This chapter provides a review of studies of post-editing effort using eye-tracking, noting the influence of publications by Danks et al. (1997), and O’Brien (2006, 2008), before describing a single study in detail. The detailed study examines whether predicted effort indicators affect post-editing effort and results were previously published as Moorkens et al. (2015). Most of the eye-tracking data analysed were unused in the previou
    • 

    corecore