36,989 research outputs found

    Mobile Crowd Location Prediction with Hybrid Features using Ensemble Learning

    Get PDF
    With the explosive growth of location-based service on mobile devices, predicting users’ future locations and trajectories is of increasing importance to support proactive information services. In this paper, we model this problem as a supervised learning task and propose to use ensemble learning methods with hybrid features to solve it. We characterize the properties of users’ visited locations and movement patterns and then extract feature types (temporal, spatial, and system) to quantify the correlation between locations and features. Finally, we apply ensemble methods to predict users’ future locations with extracted features. Moreover, we design an adaptive Markov Chain model to predict users’ trajectories between two locations. To evaluate the system performance, we use a real-life dataset from the Nokia Mobile Data Challenge. Experiment results unveil interesting findings: (1) For individual predictors, Bayes Networks outperform all others when data quality is good, while J48 delivers the best results when data quality is bad; (2) Ensemble predictors outperform individual predictors in general under all conditions; and (3) Ensemble predictor performance depends on the user movement patterns

    Mobile Crowd Location Prediction with Hybrid Features using Ensemble Learning

    Get PDF
    With the explosive growth of location-based service on mobile devices, predicting users’ future locations and trajectories is of increasing importance to support proactive information services. In this paper, we model this problem as a supervised learning task and propose to use ensemble learning methods with hybrid features to solve it. We characterize the properties of users’ visited locations and movement patterns and then extract feature types (temporal, spatial, and system) to quantify the correlation between locations and features. Finally, we apply ensemble methods to predict users’ future locations with extracted features. Moreover, we design an adaptive Markov Chain model to predict users’ trajectories between two locations. To evaluate the system performance, we use a real-life dataset from the Nokia Mobile Data Challenge. Experiment results unveil interesting findings: (1) For individual predictors, Bayes Networks outperform all others when data quality is good, while J48 delivers the best results when data quality is bad; (2) Ensemble predictors outperform individual predictors in general under all conditions; and (3) Ensemble predictor performance depends on the user movement patterns

    Modeling the scaling properties of human mobility

    Full text link
    While the fat tailed jump size and the waiting time distributions characterizing individual human trajectories strongly suggest the relevance of the continuous time random walk (CTRW) models of human mobility, no one seriously believes that human traces are truly random. Given the importance of human mobility, from epidemic modeling to traffic prediction and urban planning, we need quantitative models that can account for the statistical characteristics of individual human trajectories. Here we use empirical data on human mobility, captured by mobile phone traces, to show that the predictions of the CTRW models are in systematic conflict with the empirical results. We introduce two principles that govern human trajectories, allowing us to build a statistically self-consistent microscopic model for individual human mobility. The model not only accounts for the empirically observed scaling laws but also allows us to analytically predict most of the pertinent scaling exponents

    Context Trees: Augmenting Geospatial Trajectories with Context

    Get PDF
    Exposing latent knowledge in geospatial trajectories has the potential to provide a better understanding of the movements of individuals and groups. Motivated by such a desire, this work presents the context tree, a new hierarchical data structure that summarises the context behind user actions in a single model. We propose a method for context tree construction that augments geospatial trajectories with land usage data to identify such contexts. Through evaluation of the construction method and analysis of the properties of generated context trees, we demonstrate the foundation for understanding and modelling behaviour afforded. Summarising user contexts into a single data structure gives easy access to information that would otherwise remain latent, providing the basis for better understanding and predicting the actions and behaviours of individuals and groups. Finally, we also present a method for pruning context trees, for use in applications where it is desirable to reduce the size of the tree while retaining useful information

    Creating Full Individual-level Location Timelines from Sparse Social Media Data

    Full text link
    In many domain applications, a continuous timeline of human locations is critical; for example for understanding possible locations where a disease may spread, or the flow of traffic. While data sources such as GPS trackers or Call Data Records are temporally-rich, they are expensive, often not publicly available or garnered only in select locations, restricting their wide use. Conversely, geo-located social media data are publicly and freely available, but present challenges especially for full timeline inference due to their sparse nature. We propose a stochastic framework, Intermediate Location Computing (ILC) which uses prior knowledge about human mobility patterns to predict every missing location from an individual's social media timeline. We compare ILC with a state-of-the-art RNN baseline as well as methods that are optimized for next-location prediction only. For three major cities, ILC predicts the top 1 location for all missing locations in a timeline, at 1 and 2-hour resolution, with up to 77.2% accuracy (up to 6% better accuracy than all compared methods). Specifically, ILC also outperforms the RNN in settings of low data; both cases of very small number of users (under 50), as well as settings with more users, but with sparser timelines. In general, the RNN model needs a higher number of users to achieve the same performance as ILC. Overall, this work illustrates the tradeoff between prior knowledge of heuristics and more data, for an important societal problem of filling in entire timelines using freely available, but sparse social media data.Comment: 10 pages, 8 figures, 2 table

    Cluster-Aided Mobility Predictions

    Full text link
    Predicting the future location of users in wireless net- works has numerous applications, and can help service providers to improve the quality of service perceived by their clients. The location predictors proposed so far estimate the next location of a specific user by inspecting the past individual trajectories of this user. As a consequence, when the training data collected for a given user is limited, the resulting prediction is inaccurate. In this paper, we develop cluster-aided predictors that exploit past trajectories collected from all users to predict the next location of a given user. These predictors rely on clustering techniques and extract from the training data similarities among the mobility patterns of the various users to improve the prediction accuracy. Specifically, we present CAMP (Cluster-Aided Mobility Predictor), a cluster-aided predictor whose design is based on recent non-parametric bayesian statistical tools. CAMP is robust and adaptive in the sense that it exploits similarities in users' mobility only if such similarities are really present in the training data. We analytically prove the consistency of the predictions provided by CAMP, and investigate its performance using two large-scale datasets. CAMP significantly outperforms existing predictors, and in particular those that only exploit individual past trajectories
    • …
    corecore