41,230 research outputs found

    A novel Big Data analytics and intelligent technique to predict driver's intent

    Get PDF
    Modern age offers a great potential for automatically predicting the driver's intent through the increasing miniaturization of computing technologies, rapid advancements in communication technologies and continuous connectivity of heterogeneous smart objects. Inside the cabin and engine of modern cars, dedicated computer systems need to possess the ability to exploit the wealth of information generated by heterogeneous data sources with different contextual and conceptual representations. Processing and utilizing this diverse and voluminous data, involves many challenges concerning the design of the computational technique used to perform this task. In this paper, we investigate the various data sources available in the car and the surrounding environment, which can be utilized as inputs in order to predict driver's intent and behavior. As part of investigating these potential data sources, we conducted experiments on e-calendars for a large number of employees, and have reviewed a number of available geo referencing systems. Through the results of a statistical analysis and by computing location recognition accuracy results, we explored in detail the potential utilization of calendar location data to detect the driver's intentions. In order to exploit the numerous diverse data inputs available in modern vehicles, we investigate the suitability of different Computational Intelligence (CI) techniques, and propose a novel fuzzy computational modelling methodology. Finally, we outline the impact of applying advanced CI and Big Data analytics techniques in modern vehicles on the driver and society in general, and discuss ethical and legal issues arising from the deployment of intelligent self-learning cars

    Anticipating Visual Representations from Unlabeled Video

    Full text link
    Anticipating actions and objects before they start or appear is a difficult problem in computer vision with several real-world applications. This task is challenging partly because it requires leveraging extensive knowledge of the world that is difficult to write down. We believe that a promising resource for efficiently learning this knowledge is through readily available unlabeled video. We present a framework that capitalizes on temporal structure in unlabeled video to learn to anticipate human actions and objects. The key idea behind our approach is that we can train deep networks to predict the visual representation of images in the future. Visual representations are a promising prediction target because they encode images at a higher semantic level than pixels yet are automatic to compute. We then apply recognition algorithms on our predicted representation to anticipate objects and actions. We experimentally validate this idea on two datasets, anticipating actions one second in the future and objects five seconds in the future.Comment: CVPR 201

    Detecting, Modeling, and Predicting User Temporal Intention

    Get PDF
    The content of social media has grown exponentially in the recent years and its role has evolved from narrating life events to actually shaping them. Unfortunately, content posted and shared in social networks is vulnerable and prone to loss or change, rendering the context associated with it (a tweet, post, status, or others) meaningless. There is an inherent value in maintaining the consistency of such social records as in some cases they take over the task of being the first draft of history as collections of these social posts narrate the pulse of the street during historic events, protest, riots, elections, war, disasters, and others as shown in this work. The user sharing the resource has an implicit temporal intent: either the state of the resource at the time of sharing, or the current state of the resource at the time of the reader \clicking . In this research, we propose a model to detect and predict the user\u27s temporal intention of the author upon sharing content in the social network and of the reader upon resolving this content. To build this model, we first examine the three aspects of the problem: the resource, time, and the user. For the resource we start by analyzing the content on the live web and its persistence. We noticed that a portion of the resources shared in social media disappear, and with further analysis we unraveled a relationship between this disappearance and time. We lose around 11% of the resources after one year of sharing and a steady 7% every following year. With this, we turn to the public archives and our analysis reveals that not all posted resources are archived and even they were an average 8% per year disappears from the archives and in some cases the archived content is heavily damaged. These observations prove that in regards to archives resources are not well-enough populated to consistently and reliably reconstruct the missing resource as it existed at the time of sharing. To analyze the concept of time we devised several experiments to estimate the creation date of the shared resources. We developed Carbon Date, a tool which successfully estimated the correct creation dates for 76% of the test sets. Since the resources\u27 creation we wanted to measure if and how they change with time. We conducted a longitudinal study on a data set of very recently-published tweet-resource pairs and recording observations hourly. We found that after just one hour, ~4% of the resources have changed by ≥30% while after a day the change rate slowed to be ~12% of the resources changed by ≥40%. In regards to the third and final component of the problem we conducted user behavioral analysis experiments and built a data set of 1,124 instances manually assigned by test subjects. Temporal intention proved to be a difficult concept for average users to understand. We developed our Temporal Intention Relevancy Model (TIRM) to transform the highly subjective temporal intention problem into the more easily understood idea of relevancy between a tweet and the resource it links to, and change of the resource through time. On our collected data set TIRM produced a significant 90.27% success rate. Furthermore, we extended TIRM and used it to build a time-based model to predict temporal intention change or steadiness at the time of posting with 77% accuracy. We built a service API around this model to provide predictions and a few prototypes. Future tools could implement TIRM to assist users in pushing copies of shared resources into public web archives to ensure the integrity of the historical record. Additional tools could be used to assist the mining of the existing social media corpus by derefrencing the intended version of the shared resource based on the intention strength and the time between the tweeting and mining

    Prediction of intent in robotics and multi-agent systems.

    Get PDF
    Moving beyond the stimulus contained in observable agent behaviour, i.e. understanding the underlying intent of the observed agent is of immense interest in a variety of domains that involve collaborative and competitive scenarios, for example assistive robotics, computer games, robot-human interaction, decision support and intelligent tutoring. This review paper examines approaches for performing action recognition and prediction of intent from a multi-disciplinary perspective, in both single robot and multi-agent scenarios, and analyses the underlying challenges, focusing mainly on generative approaches

    Incentive Perception in Livestock Disease Control

    Get PDF

    Conception of the cognitive engineering design problem

    Get PDF
    Cognitive design, as the design of cognitive work and cognitive tools, is predominantly a craft practice that currently depends on the experience and insight of the designer. However, the emergence of a discipline of cognitive engineering promises a more effective alternative practice, one that turns on the prescription of solutions to cognitive design problems. In this paper, the authors first examine the requirements for advancing cognitive engineering as a discipline. In particular, they identify the need for a conception for explicitly formulating cognitive design problems. A proposal for such a conception is then presented
    • …
    corecore