17 research outputs found

    Machine Learning based Wind Power Forecasting for Operational Decision Support

    Get PDF
    To utilize renewable energy efficiently to meet the needs of mankind's living demands becomes an extremely hot topic since global warming is the most serious global environmental problem that human beings are facing today. Burning of fossil fuels, such as coal and oil directly for generating electricity leads to environment pollution and exacerbates global warning. However, large-scale development of hydropower increases greenhouse gas emissions and greenhouse effects. This research is related to knowledge of wind power forecasting (WPF) and machine learning (ML). This research is built around one central research question: How to improve the accuracy of WPF by using AI methods? A pilot conceptual system combining meteorological information and operations management has been formulated. The main contribution is visualized in a proposed new framework, named Meteorological Information Service Decision Support System, consisting of a meteorological information module, wind power prediction module and operations management module. This conceptual framework has been verified by quantitative analysis in empirical cases. This system utilizes meteorological information for decision-making based on condition-based maintenance in operations and management for the purpose of optimizing energy management. It aims to analyze and predict the variation of wind power for the next day or the following week to develop scheduling planning services for WPEs based on predicting wind speed for every six hours, which is short-term wind speed prediction, through training, validating, and testing dataset. Accurate prediction of wind speed is crucial for weather forecasting service and WPF. This study presents a carefully designed wind speed prediction model which combines fully-connected neural network (FCNN), long short-term memory (LSTM) algorithm with eXtreme Gradient Boosting (XGBoost) technique, to predict wind speed. The performance of each model is tested by using reanalysis data from European Center for Medium-Range Weather Forecasts (ECMWF) for Meteorological observatory located in Vaasa in Finland. The results show that XGBoost algorithm has similar improved prediction performance as LSTM algorithm, in terms of RMSE, MAE and R2 compared to the commonly used traditional FCNN model. On the other hand, the XGBoost algorithm has a significant advantage on training time while comparing to the other algorithms in this case study. Additionally, this sensitivity analysis indicates great potential of the optimized deep learning (DL) method, which is a subset of machine learning (ML), in improving local weather forecast on the coding platform of Python. The results indicate that, by using Meteorological Information Service Decision Support System, it is possible to support effective decision-making and create timely actions within the WPEs. Findings from this research contribute to WPF in WPEs. The main contribution of this research is achieving decision optimization on a decision support system by using ML. It was concluded that the proposed system is very promising for potential applications in wind (power) energy management

    Improving Demand Forecasting: The Challenge of Forecasting Studies Comparability and a Novel Approach to Hierarchical Time Series Forecasting

    Get PDF
    Bedarfsprognosen sind in der Wirtschaft unerlĂ€sslich. Anhand des erwarteten Kundenbe-darfs bestimmen Firmen beispielsweise welche Produkte sie entwickeln, wie viele Fabri-ken sie bauen, wie viel Personal eingestellt wird oder wie viel Rohmaterial geordert wer-den muss. FehleinschĂ€tzungen bei Bedarfsprognosen können schwerwiegende Auswir-kungen haben, zu Fehlentscheidungen fĂŒhren, und im schlimmsten Fall den Bankrott einer Firma herbeifĂŒhren. Doch in vielen FĂ€llen ist es komplex, den tatsĂ€chlichen Bedarf in der Zukunft zu antizipie-ren. Die Einflussfaktoren können vielfĂ€ltig sein, beispielsweise makroökonomische Ent-wicklung, das Verhalten von Wettbewerbern oder technologische Entwicklungen. Selbst wenn alle Einflussfaktoren bekannt sind, sind die ZusammenhĂ€nge und Wechselwirkun-gen hĂ€ufig nur schwer zu quantifizieren. Diese Dissertation trĂ€gt dazu bei, die Genauigkeit von Bedarfsprognosen zu verbessern. Im ersten Teil der Arbeit wird im Rahmen einer ĂŒberfassenden Übersicht ĂŒber das gesamte Spektrum der Anwendungsfelder von Bedarfsprognosen ein neuartiger Ansatz eingefĂŒhrt, wie Studien zu Bedarfsprognosen systematisch verglichen werden können und am Bei-spiel von 116 aktuellen Studien angewandt. Die Vergleichbarkeit von Studien zu verbes-sern ist ein wesentlicher Beitrag zur aktuellen Forschung. Denn anders als bspw. in der Medizinforschung, gibt es fĂŒr Bedarfsprognosen keine wesentlichen vergleichenden quan-titativen Meta-Studien. Der Grund dafĂŒr ist, dass empirische Studien fĂŒr Bedarfsprognosen keine vereinheitlichte Beschreibung nutzen, um ihre Daten, Verfahren und Ergebnisse zu beschreiben. Wenn Studien hingegen durch systematische Beschreibung direkt miteinan-der verglichen werden können, ermöglicht das anderen Forschern besser zu analysieren, wie sich Variationen in AnsĂ€tzen auf die PrognosegĂŒte auswirken – ohne die aufwĂ€ndige Notwendigkeit, empirische Experimente erneut durchzufĂŒhren, die bereits in Studien beschrieben wurden. Diese Arbeit fĂŒhrt erstmals eine solche Systematik zur Beschreibung ein. Der weitere Teil dieser Arbeit behandelt Prognoseverfahren fĂŒr intermittierende Zeitreihen, also Zeitreihen mit wesentlichem Anteil von Bedarfen gleich Null. Diese Art der Zeitreihen erfĂŒllen die Anforderungen an Stetigkeit der meisten Prognoseverfahren nicht, weshalb gĂ€ngige Verfahren hĂ€ufig ungenĂŒgende PrognosegĂŒte erreichen. Gleichwohl ist die Rele-vanz intermittierender Zeitreihen hoch – insbesondere Ersatzteile weisen dieses Bedarfs-muster typischerweise auf. ZunĂ€chst zeigt diese Arbeit in drei Studien auf, dass auch die getesteten Stand-der-Technik Machine Learning AnsĂ€tze bei einigen bekannten DatensĂ€t-zen keine generelle Verbesserung herbeifĂŒhren. Als wesentlichen Beitrag zur Forschung zeigt diese Arbeit im Weiteren ein neuartiges Verfahren auf: Der Similarity-based Time Series Forecasting (STSF) Ansatz nutzt ein Aggregation-Disaggregationsverfahren basie-rend auf einer selbst erzeugten Hierarchie statistischer Eigenschaften der Zeitreihen. In Zusammenhang mit dem STSF Ansatz können alle verfĂŒgbaren Prognosealgorithmen eingesetzt werden – durch die Aggregation wird die Stetigkeitsbedingung erfĂŒllt. In Expe-rimenten an insgesamt sieben öffentlich bekannten DatensĂ€tzen und einem proprietĂ€ren Datensatz zeigt die Arbeit auf, dass die PrognosegĂŒte (gemessen anhand des Root Mean Square Error RMSE) statistisch signifikant um 1-5% im Schnitt gegenĂŒber dem gleichen Verfahren ohne Einsatz von STSF verbessert werden kann. Somit fĂŒhrt das Verfahren eine wesentliche Verbesserung der PrognosegĂŒte herbei. Zusammengefasst trĂ€gt diese Dissertation zum aktuellen Stand der Forschung durch die zuvor genannten Verfahren wesentlich bei. Das vorgeschlagene Verfahren zur Standardi-sierung empirischer Studien beschleunigt den Fortschritt der Forschung, da sie verglei-chende Studien ermöglicht. Und mit dem STSF Verfahren steht ein Ansatz bereit, der zuverlĂ€ssig die PrognosegĂŒte verbessert, und dabei flexibel mit verschiedenen Arten von Prognosealgorithmen einsetzbar ist. Nach dem Erkenntnisstand der umfassenden Literatur-recherche sind keine vergleichbaren AnsĂ€tze bislang beschrieben worden

    Data-Intensive Computing in Smart Microgrids

    Get PDF
    Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid advancements in sensor and metering technologies, wireless and network communication, as well as cloud and fog computing are leading to the collection and accumulation of large amounts of data (e.g., device status data, energy generation data, consumption data). The application of big data analysis techniques (e.g., forecasting, classification, clustering) on such data can optimize the power generation and operation in real time by accurately predicting electricity demands, discovering electricity consumption patterns, and developing dynamic pricing mechanisms. An efficient and intelligent analysis of the data will enable smart microgrids to detect and recover from failures quickly, respond to electricity demand swiftly, supply more reliable and economical energy, and enable customers to have more control over their energy use. Overall, data-intensive analytics can provide effective and efficient decision support for all of the producers, operators, customers, and regulators in smart microgrids, in order to achieve holistic smart energy management, including energy generation, transmission, distribution, and demand-side management. This book contains an assortment of relevant novel research contributions that provide real-world applications of data-intensive analytics in smart grids and contribute to the dissemination of new ideas in this area

    Review of Low Voltage Load Forecasting: Methods, Applications, and Recommendations

    Full text link
    The increased digitalisation and monitoring of the energy system opens up numerous opportunities to decarbonise the energy system. Applications on low voltage, local networks, such as community energy markets and smart storage will facilitate decarbonisation, but they will require advanced control and management. Reliable forecasting will be a necessary component of many of these systems to anticipate key features and uncertainties. Despite this urgent need, there has not yet been an extensive investigation into the current state-of-the-art of low voltage level forecasts, other than at the smart meter level. This paper aims to provide a comprehensive overview of the landscape, current approaches, core applications, challenges and recommendations. Another aim of this paper is to facilitate the continued improvement and advancement in this area. To this end, the paper also surveys some of the most relevant and promising trends. It establishes an open, community-driven list of the known low voltage level open datasets to encourage further research and development.Comment: 37 pages, 6 figures, 2 tables, review pape

    Intelligent Data Analysis for Energy Management

    Get PDF
    Predictive data analysis has been identified as essential to support intelligent energy management for better energy sustainability and efficiency. Previous studies have showcased that predicted energy information can benefit consumers economically by optimising energy usage while assisting energy suppliers in efficiently planning power distribution and implementing DR energy management. Recent advances in the Internet of Things (IoT) and Information and Communication Technologies (ICT) simplify the collection of desired energy data streams for further informatics analysis. With such energy data, machine learning (ML) prevails to effectively infer future knowledge associated with online energy resource scheduling, e.g., renewable energy generation, load demands and electricity prices. Although some early efforts have been dedicated to incorporating ML into energy management, computation resource limitations and data scarcity are two pressing challenges for on-site predictive energy analysis. Due to privacy concerns, users prefer on-premise model establishment instead of placing the training task in the cloud and sharing sensitive energy data. But most ML algorithms rely heavily on solid computational resources and vast amounts of labelled data to succeed. Users are often unable to fulfil the requirements in real-world scenarios. To this end, this thesis uses different perspectives to propose several affordable solutions for performing on-demand intelligent data analysis on local resource-constrained devices. Also, three algorithm-specific training frameworks have been developed to solve data shortage by leveraging easily obtainable but extensive data sources based on transfer learning and federated learning. We implement our design under practical settings for photovoltaic (PV) power prediction and non-intrusive load monitoring (NILM) as case studies to fully evaluate their performances

    IoT and Sensor Networks in Industry and Society

    Get PDF
    The exponential progress of Information and Communication Technology (ICT) is one of the main elements that fueled the acceleration of the globalization pace. Internet of Things (IoT), Artificial Intelligence (AI) and big data analytics are some of the key players of the digital transformation that is affecting every aspect of human's daily life, from environmental monitoring to healthcare systems, from production processes to social interactions. In less than 20 years, people's everyday life has been revolutionized, and concepts such as Smart Home, Smart Grid and Smart City have become familiar also to non-technical users. The integration of embedded systems, ubiquitous Internet access, and Machine-to-Machine (M2M) communications have paved the way for paradigms such as IoT and Cyber Physical Systems (CPS) to be also introduced in high-requirement environments such as those related to industrial processes, under the forms of Industrial Internet of Things (IIoT or I2oT) and Cyber-Physical Production Systems (CPPS). As a consequence, in 2011 the German High-Tech Strategy 2020 Action Plan for Germany first envisioned the concept of Industry 4.0, which is rapidly reshaping traditional industrial processes. The term refers to the promise to be the fourth industrial revolution. Indeed, the ïŹrst industrial revolution was triggered by water and steam power. Electricity and assembly lines enabled mass production in the second industrial revolution. In the third industrial revolution, the introduction of control automation and Programmable Logic Controllers (PLCs) gave a boost to factory production. As opposed to the previous revolutions, Industry 4.0 takes advantage of Internet access, M2M communications, and deep learning not only to improve production efficiency but also to enable the so-called mass customization, i.e. the mass production of personalized products by means of modularized product design and ïŹ‚exible processes. Less than five years later, in January 2016, the Japanese 5th Science and Technology Basic Plan took a further step by introducing the concept of Super Smart Society or Society 5.0. According to this vision, in the upcoming future, scientific and technological innovation will guide our society into the next social revolution after the hunter-gatherer, agrarian, industrial, and information eras, which respectively represented the previous social revolutions. Society 5.0 is a human-centered society that fosters the simultaneous achievement of economic, environmental and social objectives, to ensure a high quality of life to all citizens. This information-enabled revolution aims to tackle today’s major challenges such as an ageing population, social inequalities, depopulation and constraints related to energy and the environment. Accordingly, the citizens will be experiencing impressive transformations into every aspect of their daily lives. This book offers an insight into the key technologies that are going to shape the future of industry and society. It is subdivided into five parts: the I Part presents a horizontal view of the main enabling technologies, whereas the II-V Parts offer a vertical perspective on four different environments. The I Part, dedicated to IoT and Sensor Network architectures, encompasses three Chapters. In Chapter 1, Peruzzi and Pozzebon analyse the literature on the subject of energy harvesting solutions for IoT monitoring systems and architectures based on Low-Power Wireless Area Networks (LPWAN). The Chapter does not limit the discussion to Long Range Wise Area Network (LoRaWAN), SigFox and Narrowband-IoT (NB-IoT) communication protocols, but it also includes other relevant solutions such as DASH7 and Long Term Evolution MAchine Type Communication (LTE-M). In Chapter 2, Hussein et al. discuss the development of an Internet of Things message protocol that supports multi-topic messaging. The Chapter further presents the implementation of a platform, which integrates the proposed communication protocol, based on Real Time Operating System. In Chapter 3, Li et al. investigate the heterogeneous task scheduling problem for data-intensive scenarios, to reduce the global task execution time, and consequently reducing data centers' energy consumption. The proposed approach aims to maximize the efficiency by comparing the cost between remote task execution and data migration. The II Part is dedicated to Industry 4.0, and includes two Chapters. In Chapter 4, Grecuccio et al. propose a solution to integrate IoT devices by leveraging a blockchain-enabled gateway based on Ethereum, so that they do not need to rely on centralized intermediaries and third-party services. As it is better explained in the paper, where the performance is evaluated in a food-chain traceability application, this solution is particularly beneficial in Industry 4.0 domains. Chapter 5, by De Fazio et al., addresses the issue of safety in workplaces by presenting a smart garment that integrates several low-power sensors to monitor environmental and biophysical parameters. This enables the detection of dangerous situations, so as to prevent or at least reduce the consequences of workers accidents. The III Part is made of two Chapters based on the topic of Smart Buildings. In Chapter 6, Petroșanu et al. review the literature about recent developments in the smart building sector, related to the use of supervised and unsupervised machine learning models of sensory data. The Chapter poses particular attention on enhanced sensing, energy efficiency, and optimal building management. In Chapter 7, Oh examines how much the education of prosumers about their energy consumption habits affects power consumption reduction and encourages energy conservation, sustainable living, and behavioral change, in residential environments. In this Chapter, energy consumption monitoring is made possible thanks to the use of smart plugs. Smart Transport is the subject of the IV Part, including three Chapters. In Chapter 8, Roveri et al. propose an approach that leverages the small world theory to control swarms of vehicles connected through Vehicle-to-Vehicle (V2V) communication protocols. Indeed, considering a queue dominated by short-range car-following dynamics, the Chapter demonstrates that safety and security are increased by the introduction of a few selected random long-range communications. In Chapter 9, Nitti et al. present a real time system to observe and analyze public transport passengers' mobility by tracking them throughout their journey on public transport vehicles. The system is based on the detection of the active Wi-Fi interfaces, through the analysis of Wi-Fi probe requests. In Chapter 10, Miler et al. discuss the development of a tool for the analysis and comparison of efficiency indicated by the integrated IT systems in the operational activities undertaken by Road Transport Enterprises (RTEs). The authors of this Chapter further provide a holistic evaluation of efficiency of telematics systems in RTE operational management. The book ends with the two Chapters of the V Part on Smart Environmental Monitoring. In Chapter 11, He et al. propose a Sea Surface Temperature Prediction (SSTP) model based on time-series similarity measure, multiple pattern learning and parameter optimization. In this strategy, the optimal parameters are determined by means of an improved Particle Swarm Optimization method. In Chapter 12, Tsipis et al. present a low-cost, WSN-based IoT system that seamlessly embeds a three-layered cloud/fog computing architecture, suitable for facilitating smart agricultural applications, especially those related to wildfire monitoring. We wish to thank all the authors that contributed to this book for their efforts. We express our gratitude to all reviewers for the volunteering support and precious feedback during the review process. We hope that this book provides valuable information and spurs meaningful discussion among researchers, engineers, businesspeople, and other experts about the role of new technologies into industry and society

    A Distributed and Real-time Machine Learning Framework for Smart Meter Big Data

    Get PDF
    The advanced metering infrastructure allows smart meters to collect high-resolution consumption data, thereby enabling consumers and utilities to understand their energy usage at different levels, which has led to numerous smart grid applications. Smart meter data, however, poses different challenges to developing machine learning frameworks than classic theoretical frameworks due to their big data features and privacy limitations. Therefore, in this work, we aim to address the challenges of building machine learning frameworks for smart meter big data. Specifically, our work includes three parts: 1) We first analyze and compare different learning algorithms for multi-level smart meter big data. A daily activity pattern recognition model has been developed based on non-intrusive load monitoring for appliance-level smart meter data. Then, a consensus-based load profiling and forecasting system has been proposed for individual building level and higher aggregated level smart meter data analysis; 2) Following discussion of multi-level smart meter data analysis from an offline perspective, a universal online functional analysis model has been proposed for multi-level real-time smart meter big data analysis. The proposed model consists of a multi-scale load dynamic profiling unit based on functional clustering and a multi-scale online load forecasting unit based on functional deep neural networks. The two units enable online tracking of the dynamic cluster trajectories and online forecasting of daily multi-scale demand; 3) To enable smart meter data analysis in the distributed environment, FederatedNILM was proposed, which is then combined with differential privacy to provide privacy guarantees for the appliance-level distributed machine learning framework. Based on federated deep learning enhanced with two schemes, namely the utility optimization scheme and the privacy-preserving scheme, the proposed distributed and privacy-preserving machine learning framework enables electric utilities and service providers to offer smart meter services on a large scale

    Maintenance Management of Wind Turbines

    Get PDF
    “Maintenance Management of Wind Turbines” considers the main concepts and the state-of-the-art, as well as advances and case studies on this topic. Maintenance is a critical variable in industry in order to reach competitiveness. It is the most important variable, together with operations, in the wind energy industry. Therefore, the correct management of corrective, predictive and preventive politics in any wind turbine is required. The content also considers original research works that focus on content that is complementary to other sub-disciplines, such as economics, finance, marketing, decision and risk analysis, engineering, etc., in the maintenance management of wind turbines. This book focuses on real case studies. These case studies concern topics such as failure detection and diagnosis, fault trees and subdisciplines (e.g., FMECA, FMEA, etc.) Most of them link these topics with financial, schedule, resources, downtimes, etc., in order to increase productivity, profitability, maintainability, reliability, safety, availability, and reduce costs and downtime, etc., in a wind turbine. Advances in mathematics, models, computational techniques, dynamic analysis, etc., are employed in analytics in maintenance management in this book. Finally, the book considers computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques that are expertly blended to support the analysis of multi-criteria decision-making problems with defined constraints and requirements
    corecore