7,365 research outputs found

    Clinical review: Biomarkers of acute kidney injury: where are we now?

    Get PDF
    The recognition that acute kidney injury (AKI) is a significant independent risk factor for morbidity and mortality has resulted in a substantial number of publications over the past 5 years or more. In no small part these have, to a degree, highlighted the inadequacy of conventional markers of renal insufficiency in the acute setting. Much effort has been invested in the identification of early, specific AKI markers in order to aid early diagnosis of AKI and hopefully improve outcome. The search for a 'biomarker' of AKI has seen early promise replaced by a degree of pessimism due to the lack of a clear candidate molecule and variability of results. We outline the major studies described to date as well as discuss potential reasons for the discrepancies observed and suggest that evolution of the field may result in success with ultimately an improvement in patient outcomes

    Urinary chitinase 3-like protein 1 for early diagnosis of acute kidney injury : a prospective cohort study in adult critically ill patients

    Get PDF
    Background: Acute kidney injury (AKI) occurs frequently and adversely affects patient and kidney outcomes, especially when its severity increases from stage 1 to stages 2 or 3. Early interventions may counteract such deterioration, but this requires early detection. Our aim was to evaluate whether the novel renal damage biomarker urinary chitinase 3-like protein 1 (UCHI3L1) can detect AKI stage >= 2 more early than serum creatinine and urine output, using the respective Kidney Disease vertical bar Improving Global Outcomes (KDIGO) criteria for definition and classification of AKI, and compare this to urinary neutrophil gelatinase-associated lipocalin (UNGAL). Methods: This was a translational single-center, prospective cohort study at the 22-bed surgical and 14-bed medical intensive care units (ICU) of Ghent University Hospital. We enrolled 181 severely ill adult patients who did not yet have AKI stage >= 2 based on the KDIGO criteria at time of enrollment. The concentration of creatinine (serum, urine) and CHI3L1 (serum, urine) was measured at least daily, and urine output hourly, in the period from enrollment till ICU discharge with a maximum of 7 ICU-days. The concentration of UNGAL was measured at enrollment. The primary endpoint was the development of AKI stage >= 2 within 12 h after enrollment. Results: After enrollment, 21 (12 %) patients developed AKI stage >= 2 within the next 7 days, with 6 (3 %) of them reaching this condition within the first 12 h. The enrollment concentration of UCHI3L1 predicted the occurrence of AKI stage >= 2 within the next 12 h with a good AUC-ROC of 0.792 (95 % CI: 0.726-0.849). This performance was similar to that of UNGAL (AUC-ROC of 0.748 (95 % CI: 0.678-0.810)). Also, the samples collected in the 24-h time frame preceding diagnosis of the 1st episode of AKI stage >= 2 had a 2.0 times higher (95 % CI: 1.3-3.1) estimated marginal mean of UCHI3L1 than controls. We further found that increasing UCHI3L1 concentrations were associated with increasing AKI severity. Conclusions: In this pilot study we found that UCHI3L1 was a good biomarker for prediction of AKI stage >= 2 in adult ICU patients

    Galectin-3. One molecule for an alphabet of diseases, from A to Z

    Get PDF
    Galectin-3 (Gal-3) regulates basic cellular functions such as cell–cell and cell–matrix interactions, growth, proliferation, differentiation, and inflammation. It is not surprising, therefore, that this protein is involved in the pathogenesis of many relevant human diseases, including cancer, fibrosis, chronic inflammation and scarring affecting many different tissues. The papers published in the literature have progressively increased in number during the last decades, testifying the great interest given to this protein by numerous researchers involved in many different clinical contexts. Considering the crucial role exerted by Gal-3 in many different clinical conditions, Gal-3 is emerging as a new diagnostic, prognostic biomarker and as a new promising therapeutic target. The current review aims to extensively examine the studies published so far on the role of Gal-3 in all the clinical conditions and diseases, listed in alphabetical order, where it was analyzed

    Development of a MALDI MS-based platform for early detection of acute kidney injury

    Get PDF
    Purpose: Septic acute kidney injury (AKI) is associated with poor outcome. This can partly be attributed to delayed diagnosis and incomplete understanding of the underlying pathophysiology. Our aim was to develop an early predictive test for AKI based on the analysis of urinary peptide biomarkers by MALDI-MS. Experimental design: Urine samples from 95 patients with sepsis were analyzed by MALDI-MS. Marker search and multimarker model establishment were performed using the peptide profiles from 17 patients with existing or within the next 5 days developing AKI and 17 with no change in renal function. Replicates of urine sample pools from the AKI and non-AKI patient groups and normal controls were also included to select the analytically most robust AKI markers. Results: Thirty-nine urinary peptides were selected by cross-validated variable selection to generate a support vector machine multidimensional AKI classifier. Prognostic performance of the AKI classifier on an independent validation set including the remaining 61 patients of the study population (17 controls and 44 cases) was good with an area under the receiver operating characteristics curve of 0.82 and a sensitivity and specificity of 86% and 76%, respectively. Conclusion and clinical relevance: A urinary peptide marker model detects onset of AKI with acceptable accuracy in septic patients. Such a platform can eventually be transferred to the clinic as fast MALDI-MS test format

    Distinctive Cytokines as Biomarkers Predicting Fatal Outcome of Severe Staphylococcus aureus Bacteremia in Mice

    Get PDF
    Invasive Staphylococcus aureus infections are frequently associated with bacteraemia. To support clinical decisions on antibiotic therapy, there is an urgent need for reliable markers as predictors of infection outcome. In the present study in mice, bacteraemia was established by intravenous inoculation of a clinical S. aureus isolate at the LD50 inoculum. As potential biomarkers for fatal outcome, blood culture (qualitative and quantitative), serum levels of C-reactive protein (CRP), as well as 31 selected cytokines and chemokines were assessed during the first three days of infection. A positive S. aureus blood culture, the quantitative blood culture, CRP levels, and levels of eight cytokines were indicative for the presence of S. aureus bacteraemia. However, only tumor necrosis factor (TNF) α, interleukin (IL) 1α, and keratinocyte chemoattractant (KC; a functional homologue of human IL-8) were each significantly elevated in eventually non-surviving infected mice versus eventually surviving infected mice. In severe S. aureus bacteraemia in mice, TNF-α, IL-1α, and KC are biomarkers predicting fatal outcome of infection. KC was a biomarker elevated irrespective the progression of infection, which is very interesting regarding clinical application in view of the heterogeneity of patients experiencing bacteraemia in this respect

    High circulating CD39+ regulatory T cells predict poor survival for sepsis patients

    Get PDF
    SummaryBackgroundSepsis encompasses two phases, the ‘hyper’-reactive phase and the ‘hypo’-reactive phase. The initial inflammatory stage is quickly counterbalanced by an anti-inflammatory response, which compromises the immune system, leading to immune suppression. Regulatory T cells (Tregs) have been implicated in the pathogenesis of sepsis by inducing immunosuppression; however, the role of CD39+ Tregs in the process of sepsis is uncertain. This study investigated the dynamic levels of CD39+ Tregs and their phenotypic change in sepsis.MethodsFourteen patients with systemic inflammatory response syndrome (SIRS), 42 patients with sepsis, and 14 healthy controls were enrolled. Sequential blood samples were used to analyze the numbers of CD39+ Tregs and their phenotypic changes. Survival at 28 days was used to evaluate the capacity of CD39+ Treg levels to predict mortality in sepsis patients.ResultsSepsis patients displayed a high percentage (3.13%, 1.46%, and 0.35%, respectively) and mean fluorescence intensity (MFI) (59.65, 29.7, and 24.3, respectively) of CD39+ Tregs compared with SIRS patients and healthy subjects. High-level expression of CD39+ Tregs was correlated with the severity of sepsis, which was reflected by the sepsis-related organ failure assessment score (r=0.322 and r=0.31, respectively). In addition, the expression of CD39+ Tregs was associated with survival of sepsis patients (p<0.01). By receiver-operating characteristic (ROC) curve analysis, the percentage and MFI of CD39+ Tregs showed similar sensitivities and specificities to predict mortality (74.2% and 85.1%, and 73.9% and 84.1%, respectively). Using Kaplan–Meier curves to assess the impact of CD39+ Tregs percentage and MFI on overall survival, we found that a high CD39+ Tregs percentage (p<0.001; >4.1%) and MFI (p<0.001; >49.2) were significantly associated with mortality. Phenotypically, CD39+ Tregs from sepsis patients showed high expression of CD38 and PD-1 (p<0.01 and p<0.01 respectively).ConclusionsIncreased expression of CD39+ Tregs was associated with a poor prognosis for sepsis patients, which suggests that CD39+ Treg levels could be used as a biomarker to predict the outcome of sepsis patients
    • …
    corecore