1,343 research outputs found

    Deadline constrained prediction of job resource requirements to manage high-level SLAs for SaaS cloud providers

    Get PDF
    For a non IT expert to use services in the Cloud is more natural to negotiate the QoS with the provider in terms of service-level metrics –e.g. job deadlines– instead of resourcelevel metrics –e.g. CPU MHz. However, current infrastructures only support resource-level metrics –e.g. CPU share and memory allocation– and there is not a well-known mechanism to translate from service-level metrics to resource-level metrics. Moreover, the lack of precise information regarding the requirements of the services leads to an inefficient resource allocation –usually, providers allocate whole resources to prevent SLA violations. According to this, we propose a novel mechanism to overcome this translation problem using an online prediction system which includes a fast analytical predictor and an adaptive machine learning based predictor. We also show how a deadline scheduler could use these predictions to help providers to make the most of their resources. Our evaluation shows: i) that fast algorithms are able to make predictions with an 11% and 17% of relative error for the CPU and memory respectively; ii) the potential of using accurate predictions in the scheduling compared to simple yet well-known schedulers.Preprin

    Comparing time series with machine learning-based prediction approaches for violation management in cloud SLAs

    Get PDF
    © 2018 In cloud computing, service level agreements (SLAs) are legal agreements between a service provider and consumer that contain a list of obligations and commitments which need to be satisfied by both parties during the transaction. From a service provider's perspective, a violation of such a commitment leads to penalties in terms of money and reputation and thus has to be effectively managed. In the literature, this problem has been studied under the domain of cloud service management. One aspect required to manage cloud services after the formation of SLAs is to predict the future Quality of Service (QoS) of cloud parameters to ascertain if they lead to violations. Various approaches in the literature perform this task using different prediction approaches however none of them study the accuracy of each. However, it is important to do this as the results of each prediction approach vary according to the pattern of the input data and selecting an incorrect choice of a prediction algorithm could lead to service violation and penalties. In this paper, we test and report the accuracy of time series and machine learning-based prediction approaches. In each category, we test many different techniques and rank them according to their order of accuracy in predicting future QoS. Our analysis helps the cloud service provider to choose an appropriate prediction approach (whether time series or machine learning based) and further to utilize the best method depending on input data patterns to obtain an accurate prediction result and better manage their SLAs to avoid violation penalties

    An Approach of QoS Evaluation for Web Services Design With Optimized Avoidance of SLA Violations

    Get PDF
    Quality of service (QoS) is an official agreement that governs the contractual commitments between service providers and consumers in respect to various nonfunctional requirements, such as performance, dependability, and security. While more Web services are available for the construction of software systems based upon service-oriented architecture (SOA), QoS has become a decisive factor for service consumers to choose from service providers who provide similar services. QoS is usually documented on a service-level agreement (SLA) to ensure the functionality and quality of services and to define monetary penalties in case of any violation of the written agreement. Consequently, service providers have a strong interest in keeping their commitments to avoid and reduce the situations that may cause SLA violations.However, there is a noticeable shortage of tools that can be used by service providers to either quantitively evaluate QoS of their services for the predication of SLA violations or actively adjust their design for the avoidance of SLA violations with optimized service reconfigurations. Developed in this dissertation research is an innovative framework that tackles the problem of SLA violations in three separated yet connected phases. For a given SOA system under examination, the framework employs sensitivity analysis in the first phase to identify factors that are influential to system performance, and the impact of influential factors on QoS is then quantitatively measured with a metamodel-based analysis in the second phase. The results of analyses are then used in the third phase to search both globally and locally for optimal solutions via a controlled number of experiments. In addition to technical details, this dissertation includes experiment results to demonstrate that this new approach can help service providers not only predicting SLA violations but also avoiding the unnecessary increase of the operational cost during service optimization
    • …
    corecore