27,942 research outputs found

    AUGUR: Forecasting the Emergence of New Research Topics

    Get PDF
    Being able to rapidly recognise new research trends is strategic for many stakeholders, including universities, institutional funding bodies, academic publishers and companies. The literature presents several approaches to identifying the emergence of new research topics, which rely on the assumption that the topic is already exhibiting a certain degree of popularity and consistently referred to by a community of researchers. However, detecting the emergence of a new research area at an embryonic stage, i.e., before the topic has been consistently labelled by a community of researchers and associated with a number of publications, is still an open challenge. We address this issue by introducing Augur, a novel approach to the early detection of research topics. Augur analyses the diachronic relationships between research areas and is able to detect clusters of topics that exhibit dynamics correlated with the emergence of new research topics. Here we also present the Advanced Clique Percolation Method (ACPM), a new community detection algorithm developed specifically for supporting this task. Augur was evaluated on a gold standard of 1,408 debutant topics in the 2000-2011 interval and outperformed four alternative approaches in terms of both precision and recall

    Big Data and Changing Concepts of the Human

    Get PDF
    Big Data has the potential to enable unprecedentedly rigorous quantitative modeling of complex human social relationships and social structures. When such models are extended to nonhuman domains, they can undermine anthropocentric assumptions about the extent to which these relationships and structures are specifically human. Discoveries of relevant commonalities with nonhumans may not make us less human, but they promise to challenge fundamental views of what it is to be human

    Asymmetry of social interactions and its role in link predictability: the case of coauthorship networks

    Full text link
    The paper provides important insights into understanding the factors that influence tie strength in social networks. Using local network measures that take into account asymmetry of social interactions we show that the observed tie strength is a kind of compromise, which depends on the relative strength of the tie as seen from its both ends. This statement is supported by the Granovetter-like, strongly positive weight-topology correlations, in the form of a power-law relationship between the asymmetric tie strength and asymmetric neighbourhood overlap, observed in three different real coauthorship networks and in a synthetic model of scientific collaboration. This observation is juxtaposed against the current misconception that coauthorship networks, being the proxy of scientific collaboration networks, contradict the Granovetter's strength of weak ties hypothesis, and the reasons for this misconception are explained. Finally, by testing various link similarity scores, it is shown that taking into account the asymmetry of social ties can remarkably increase the efficiency of link prediction methods. The perspective outlined also allows us to comment on the surprisingly high performance of the resource allocation index -- one of the most recognizable and effective local similarity scores -- which can be rationalized by the strong triadic closure property, assuming that the property takes into account the asymmetry of social ties

    Evaluating the state-of-the-art in mapping research spaces: a Brazilian case study

    Full text link
    Scientific knowledge cannot be seen as a set of isolated fields, but as a highly connected network. Understanding how research areas are connected is of paramount importance for adequately allocating funding and human resources (e.g., assembling teams to tackle multidisciplinary problems). The relationship between disciplines can be drawn from data on the trajectory of individual scientists, as researchers often make contributions in a small set of interrelated areas. Two recent works propose methods for creating research maps from scientists' publication records: by using a frequentist approach to create a transition probability matrix; and by learning embeddings (vector representations). Surprisingly, these models were evaluated on different datasets and have never been compared in the literature. In this work, we compare both models in a systematic way, using a large dataset of publication records from Brazilian researchers. We evaluate these models' ability to predict whether a given entity (scientist, institution or region) will enter a new field w.r.t. the area under the ROC curve. Moreover, we analyze how sensitive each method is to the number of publications and the number of fields associated to one entity. Last, we conduct a case study to showcase how these models can be used to characterize science dynamics in the context of Brazil.Comment: 28 pages, 11 figure
    • …
    corecore