76 research outputs found

    Automatic Generation of Personalized Recommendations in eCoaching

    Get PDF
    Denne avhandlingen omhandler eCoaching for personlig livsstilsstÞtte i sanntid ved bruk av informasjons- og kommunikasjonsteknologi. Utfordringen er Ä designe, utvikle og teknisk evaluere en prototyp av en intelligent eCoach som automatisk genererer personlige og evidensbaserte anbefalinger til en bedre livsstil. Den utviklede lÞsningen er fokusert pÄ forbedring av fysisk aktivitet. Prototypen bruker bÊrbare medisinske aktivitetssensorer. De innsamlede data blir semantisk representert og kunstig intelligente algoritmer genererer automatisk meningsfulle, personlige og kontekstbaserte anbefalinger for mindre stillesittende tid. Oppgaven bruker den veletablerte designvitenskapelige forskningsmetodikken for Ä utvikle teoretiske grunnlag og praktiske implementeringer. Samlet sett fokuserer denne forskningen pÄ teknologisk verifisering snarere enn klinisk evaluering.publishedVersio

    Intentional dialogues in multi-agent systems based on ontologies and argumentation

    Get PDF
    Some areas of application, for example, healthcare, are known to resist the replacement of human operators by fully autonomous systems. It is typically not transparent to users how artificial intelligence systems make decisions or obtain information, making it difficult for users to trust them. To address this issue, we investigate how argumentation theory and ontology techniques can be used together with reasoning about intentions to build complex natural language dialogues to support human decision-making. Based on such an investigation, we propose MAIDS, a framework for developing multi-agent intentional dialogue systems, which can be used in different domains. Our framework is modular so that it can be used in its entirety or just the modules that fulfil the requirements of each system to be developed. Our work also includes the formalisation of a novel dialogue-subdialogue structure with which we can address ontological or theory-of-mind issues and later return to the main subject. As a case study, we have developed a multi-agent system using the MAIDS framework to support healthcare professionals in making decisions on hospital bed allocations. Furthermore, we evaluated this multi-agent system with domain experts using real data from a hospital. The specialists who evaluated our system strongly agree or agree that the dialogues in which they participated fulfil Cohen’s desiderata for task-oriented dialogue systems. Our agents have the ability to explain to the user how they arrived at certain conclusions. Moreover, they have semantic representations as well as representations of the mental state of the dialogue participants, allowing the formulation of coherent justifications expressed in natural language, therefore, easy for human participants to understand. This indicates the potential of the framework introduced in this thesis for the practical development of explainable intelligent systems as well as systems supporting hybrid intelligence

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established

    Combining Query Rewriting and Knowledge Graph Embeddings for Complex Query Answering

    Get PDF
    The field of complex query answering using Knowledge Graphs (KGs) has seen substantial advancements in recent years, primarily through the utilization of Knowledge Graph Embeddings (KGEs). However, these methodologies often stumble when faced with intricate query structures that involve multiple entities and relationships. This thesis primarily investigates the potential of integrating query rewriting techniques into the KGE query answering process to improve performance in such situations. Guided by a TBox, a schema that describes the concepts and relationships in the data from Description Logics, query rewriting translates a query into a union of rewritten queries that can potentially widen the prediction scope for KGEs. The thesis uses the PerfectRef algorithm for facilitating query rewriting, aiming to maximize the scope of query response and enhance prediction capabilities. Two distinct datasets were employed in the study: The Family Dataset, a subset of Wikidata, and DBPedia15k, a subset of DBPedia. The effectiveness of the proposed methodology was evaluated against these datasets using different KGE models, in our case TransE, DistMult, BoxE, RotatE, and CompGCN. The results demonstrate a notable improvement in complex query answering when query rewriting is used for both The Family dataset and DBPedia15k. Furthermore, the amalgamation of query rewriting and KGE predictions yielded a performance boost for The Family dataset. However, the same was not observed for DBPedia15k, likely due to discrepancies and errors present within DBPedia15k compared to the Full DBPedia KG used for validation in our framework. This research suggests that query rewriting, as a pre-processing step for KGE prediction, can enhance the performance of complex query answering, mainly when the dataset is not fully entailed. This study provides important insights into the potential and limitations of integrating query rewriting with KGEs. It may serve as a guidepost for future research to improve the complex query answering when a TBox is available.Masteroppgave i informatikkINF399MAMN-PROGMAMN-IN

    Context Awareness in Swarm Systems

    Full text link
    Recent swarms of Uncrewed Systems (UxS) require substantial human input to support their operation. The little 'intelligence' on these platforms limits their potential value and increases their overall cost. Artificial Intelligence (AI) solutions are needed to allow a single human to guide swarms of larger sizes. Shepherding is a bio-inspired swarm guidance approach with one or a few sheepdogs guiding a larger number of sheep. By designing AI-agents playing the role of sheepdogs, humans can guide the swarm by using these AI agents in the same manner that a farmer uses biological sheepdogs to muster sheep. A context-aware AI-sheepdog offers human operators a smarter command and control system. It overcomes the current limiting assumption in the literature of swarm homogeneity to manage heterogeneous swarms and allows the AI agents to better team with human operators. This thesis aims to demonstrate the use of an ontology-guided architecture to deliver enhanced contextual awareness for swarm control agents. The proposed architecture increases the contextual awareness of AI-sheepdogs to improve swarm guidance and control, enabling individual and collective UxS to characterise and respond to ambiguous swarm behavioural patterns. The architecture, associated methods, and algorithms advance the swarm literature by allowing improved contextual awareness to guide heterogeneous swarms. Metrics and methods are developed to identify the sources of influence in the swarm, recognise and discriminate the behavioural traits of heterogeneous influencing agents, and design AI algorithms to recognise activities and behaviours. The proposed contributions will enable the next generation of UxS with higher levels of autonomy to generate more effective Human-Swarm Teams (HSTs)

    Towards Efficient Novel Materials Discovery

    Get PDF
    Die Entdeckung von neuen Materialien mit speziellen funktionalen Eigenschaften ist eins der wichtigsten Ziele in den Materialwissenschaften. Das Screening des strukturellen und chemischen Phasenraums nach potentiellen neuen Materialkandidaten wird hĂ€ufig durch den Einsatz von Hochdurchsatzmethoden erleichtert. Schnelle und genaue Berechnungen sind eins der Hauptwerkzeuge solcher Screenings, deren erster Schritt oft Geometrierelaxationen sind. In Teil I dieser Arbeit wird eine neue Methode der eingeschrĂ€nkten Geometrierelaxation vorgestellt, welche die perfekte Symmetrie des Kristalls erhĂ€lt, Resourcen spart sowie Relaxationen von metastabilen Phasen und Systemen mit lokalen Symmetrien und Verzerrungen erlaubt. Neben der Verbesserung solcher Berechnungen um den Materialraum schneller zu durchleuchten ist auch eine bessere Nutzung vorhandener Daten ein wichtiger Pfeiler zur Beschleunigung der Entdeckung neuer Materialien. Obwohl schon viele verschiedene Datenbanken fĂŒr computerbasierte Materialdaten existieren ist die Nutzbarkeit abhĂ€ngig von der Darstellung dieser Daten. Hier untersuchen wir inwiefern semantische Technologien und Graphdarstellungen die Annotation von Daten verbessern können. Verschiedene Ontologien und Wissensgraphen werden entwickelt anhand derer die semantische Darstellung von Kristallstrukturen, Materialeigenschaften sowie experimentellen Ergebenissen im Gebiet der heterogenen Katalyse ermöglicht werden. Wir diskutieren, wie der Ansatz Ontologien und Wissensgraphen zu separieren, zusammenbricht wenn neues Wissen mit kĂŒnstlicher Intelligenz involviert ist. Eine Zwischenebene wird als Lösung vorgeschlagen. Die Ontologien bilden das Hintergrundwissen, welches als Grundlage von zukĂŒnftigen autonomen Agenten verwendet werden kann. Zusammenfassend ist es noch ein langer Weg bis Materialdaten fĂŒr Maschinen verstĂ€ndlich gemacht werden können, so das der direkte Nutzen semantischer Technologien nach aktuellem Stand in den Materialwissenschaften sehr limitiert ist.The discovery of novel materials with specific functional properties is one of the highest goals in materials science. Screening the structural and chemical space for potential new material candidates is often facilitated by high-throughput methods. Fast and still precise computations are a main tool for such screenings and often start with a geometry relaxation to find the nearest low-energy configuration relative to the input structure. In part I of this work, a new constrained geometry relaxation is presented which maintains the perfect symmetry of a crystal, saves time and resources as well as enables relaxations of meta-stable phases and systems with local symmetries or distortions. Apart from improving such computations for a quicker screening of the materials space, better usage of existing data is another pillar that can accelerate novel materials discovery. While many different databases exists that make computational results accessible, their usability depends largely on how the data is presented. We here investigate how semantic technologies and graph representations can improve data annotation. A number of different ontologies and knowledge graphs are developed enabling the semantic representation of crystal structures, materials properties as well experimental results in the field of heterogeneous catalysis. We discuss the breakdown of the knowledge-graph approach when knowledge is created using artificial intelligence and propose an intermediate information layer. The underlying ontologies can provide background knowledge for possible autonomous intelligent agents in the future. We conclude that making materials science data understandable to machines is still a long way to go and the usefulness of semantic technologies in the domain of materials science is at the moment very limited

    Inferring Activities of Daily Living of Home-Care Patients Through Wearable and Ambient Sensing

    Get PDF
    There is an increasing demand for remote healthcare systems for single person households as it facilitates independent living in a smart home setting. Much research eïŹ€ort has been invested to develop such systems to monitor and infer if the person is able to perform their routine activities on a daily basis. In this research study, two diïŹ€erent methods have been proposed for recognizing activities of daily life (ADL) using wearable and ambient sensing respectively. The thesis presents a novel algorithm for near real-time recognition of low-level micro-activities and their associated zone of occurrence within the house by using just the wearable as the lone sensor data. This is achieved by gathering location information of the target person using a wearable beacon embedded with magnetometer and inertial sensors. A hybrid three-tier approach is adopted where the main intention is to map the location of a person performing an activity with pre-deïŹned house landmarks and zones in the oïŹ„ine labeled database. Experimental results demonstrate that it is possible to achieve centimeter-level accuracy for recognition of micro-activities and a classiïŹcation accuracy of 85% for trajectory prediction. Furthermore, addi-tional tests were carried out to assess whether increased antenna gain improves the ranking accuracy of the ïŹngerprinting method adopted for location estimation. The thesis explores another method using ambient sensors for activity recognition by integrating stream reasoning, ontological modeling and probabilistic inference using Markov Logic Networks. The incoming sensor data stream is analyzed in real time by exploring semantic relationships, location context and temporal rea-soning between individual events using a stream-processing engine. Experimental analysis of the proposed method with two real-world datasets shows improvement in recognizing complex activities carried out in a smart home environment. An average F-measure score of 92.35% and 85.75% was achieved for recognition of interwoven activities using this method

    Deployment and Operation of Complex Software in Heterogeneous Execution Environments

    Get PDF
    This open access book provides an overview of the work developed within the SODALITE project, which aims at facilitating the deployment and operation of distributed software on top of heterogeneous infrastructures, including cloud, HPC and edge resources. The experts participating in the project describe how SODALITE works and how it can be exploited by end users. While multiple languages and tools are available in the literature to support DevOps teams in the automation of deployment and operation steps, still these activities require specific know-how and skills that cannot be found in average teams. The SODALITE framework tackles this problem by offering modelling and smart editing features to allow those we call Application Ops Experts to work without knowing low level details about the adopted, potentially heterogeneous, infrastructures. The framework offers also mechanisms to verify the quality of the defined models, generate the corresponding executable infrastructural code, automatically wrap application components within proper execution containers, orchestrate all activities concerned with deployment and operation of all system components, and support on-the-fly self-adaptation and refactoring

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions
    • 

    corecore