435 research outputs found

    Learning the Regulatory Code of Gene Expression

    Get PDF
    Data-driven machine learning is the method of choice for predicting molecular phenotypes from nucleotide sequence, modeling gene expression events including protein-DNA binding, chromatin states as well as mRNA and protein levels. Deep neural networks automatically learn informative sequence representations and interpreting them enables us to improve our understanding of the regulatory code governing gene expression. Here, we review the latest developments that apply shallow or deep learning to quantify molecular phenotypes and decode the cis-regulatory grammar from prokaryotic and eukaryotic sequencing data. Our approach is to build from the ground up, first focusing on the initiating protein-DNA interactions, then specific coding and non-coding regions, and finally on advances that combine multiple parts of the gene and mRNA regulatory structures, achieving unprecedented performance. We thus provide a quantitative view of gene expression regulation from nucleotide sequence, concluding with an information-centric overview of the central dogma of molecular biology

    Explainable deep learning models for biological sequence classification

    Get PDF
    Biological sequences - DNA, RNA and proteins - orchestrate the behavior of all living cells and trying to understand the mechanisms that govern and regulate the interactions among these molecules has motivated biological research for many years. The introduction of experimental protocols that analyze such interactions on a genome- or transcriptome-wide scale has also established the usage of machine learning in our field to make sense of the vast amounts of generated data. Recently, deep learning, a branch of machine learning based on artificial neural networks, and especially convolutional neural networks (CNNs) were shown to deliver promising results for predictive tasks and automated feature extraction. However, the resulting models are often very complex and thus make model application and interpretation hard, but the possibility to interpret which features a model has learned from the data is crucial to understand and to explain new biological mechanisms. This work therefore presents pysster, our open source software library that enables researchers to more easily train, apply and interpret CNNs on biological sequence data. We evaluate and implement different feature interpretation and visualization strategies and show that the flexibility of CNNs allows for the integration of additional data beyond pure sequences to improve the biological feature interpretability. We demonstrate this by building, among others, predictive models for transcription factor and RNA-binding protein binding sites and by supplementing these models with structural information in the form of DNA shape and RNA secondary structure. Features learned by models are then visualized as sequence and structure motifs together with information about motif locations and motif co-occurrence. By further analyzing an artificial data set containing implanted motifs we also illustrate how the hierarchical feature extraction process in a multi-layer deep neural network operates. Finally, we present a larger biological application by predicting RNA-binding of proteins for transcripts for which experimental protein-RNA interaction data is not yet available. Here, the comprehensive interpretation options of CNNs made us aware of potential technical bias in the experimental eCLIP data (enhanced crosslinking and immunoprecipitation) that were used as a basis for the models. This allowed for subsequent tuning of the models and data to get more meaningful predictions in practice

    Deep Learning for Genomics: A Concise Overview

    Full text link
    Advancements in genomic research such as high-throughput sequencing techniques have driven modern genomic studies into "big data" disciplines. This data explosion is constantly challenging conventional methods used in genomics. In parallel with the urgent demand for robust algorithms, deep learning has succeeded in a variety of fields such as vision, speech, and text processing. Yet genomics entails unique challenges to deep learning since we are expecting from deep learning a superhuman intelligence that explores beyond our knowledge to interpret the genome. A powerful deep learning model should rely on insightful utilization of task-specific knowledge. In this paper, we briefly discuss the strengths of different deep learning models from a genomic perspective so as to fit each particular task with a proper deep architecture, and remark on practical considerations of developing modern deep learning architectures for genomics. We also provide a concise review of deep learning applications in various aspects of genomic research, as well as pointing out potential opportunities and obstacles for future genomics applications.Comment: Invited chapter for Springer Book: Handbook of Deep Learning Application

    Artificial intelligence methods enhance the discovery of RNA interactions

    Get PDF
    Understanding how RNAs interact with proteins, RNAs, or other molecules remains a challenge of main interest in biology, given the importance of these complexes in both normal and pathological cellular processes. Since experimental datasets are starting to be available for hundreds of functional interactions between RNAs and other biomolecules, several machine learning and deep learning algorithms have been proposed for predicting RNA-RNA or RNA-protein interactions. However, most of these approaches were evaluated on a single dataset, making performance comparisons difficult. With this review, we aim to summarize recent computational methods, developed in this broad research area, highlighting feature encoding and machine learning strategies adopted. Given the magnitude of the effect that dataset size and quality have on performance, we explored the characteristics of these datasets. Additionally, we discuss multiple approaches to generate datasets of negative examples for training. Finally, we describe the best-performing methods to predict interactions between proteins and specific classes of RNA molecules, such as circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), and methods to predict RNA-RNA or RNA-RBP interactions independently of the RNA type

    Novel computational methods for studying the role and interactions of transcription factors in gene regulation

    Get PDF
    Regulation of which genes are expressed and when enables the existence of different cell types sharing the same genetic code in their DNA. Erroneously functioning gene regulation can lead to diseases such as cancer. Gene regulatory programs can malfunction in several ways. Often if a disease is caused by a defective protein, the cause is a mutation in the gene coding for the protein rendering the protein unable to perform its functions properly. However, protein-coding genes make up only about 1.5% of the human genome, and majority of all disease-associated mutations discovered reside outside protein-coding genes. The mechanisms of action of these non-coding disease-associated mutations are far more incompletely understood. Binding of transcription factors (TFs) to DNA controls the rate of transcribing genetic information from the coding DNA sequence to RNA. Binding affinities of TFs to DNA have been extensively measured in vitro, ligands by exponential enrichment) and Protein Binding Microarrays (PBMs), and the genome-wide binding locations and patterns of TFs have been mapped in dozens of cell types. Despite this, our understanding of how TF binding to regulatory regions of the genome, promoters and enhancers, leads to gene expression is not at the level where gene expression could be reliably predicted based on DNA sequence only. In this work, we develop and apply computational tools to analyze and model the effects of TF-DNA binding. We also develop new methods for interpreting and understanding deep learning-based models trained on biological sequence data. In biological applications, the ability to understand how machine learning models make predictions is as, or even more important as raw predictive performance. This has created a demand for approaches helping researchers extract biologically meaningful information from deep learning model predictions. We develop a novel computational method for determining TF binding sites genome-wide from recently developed high-resolution ChIP-exo and ChIP-nexus experiments. We demonstrate that our method performs similarly or better than previously published methods while making less assumptions about the data. We also describe an improved algorithm for calling allele-specific TF-DNA binding. We utilize deep learning methods to learn features predicting transcriptional activity of human promoters and enhancers. The deep learning models are trained on massively parallel reporter gene assay (MPRA) data from human genomic regulatory elements, designed regulatory elements and promoters and enhancers selected from totally random pool of synthetic input DNA. This unprecedentedly large set of measurements of human gene regulatory element activities, in total more than 100 times the size of the human genome, allowed us to train models that were able to predict genomic transcription start site positions more accurately than models trained on genomic promoters, and to correctly predict effects of disease-associated promoter variants. We also found that interactions between promoters and local classical enhancers are non-specific in nature. The MPRA data integrated with extensive epigenetic measurements supports existence of three different classes of enhancers: classical enhancers, closed chromatin enhancers and chromatin-dependent enhancers. We also show that TFs can be divided into four different, non-exclusive classes based on their activities: chromatin opening, enhancing, promoting and TSS determining TFs. Interpreting the deep learning models of human gene regulatory elements required application of several existing model interpretation tools as well as developing new approaches. Here, we describe two new methods for visualizing features and interactions learned by deep learning models. Firstly, we describe an algorithm for testing if a deep learning model has learned an existing binding motif of a TF. Secondly, we visualize mutual information between pairwise k-mer distributions in sample inputs selected according to predictions by a machine learning model. This method highlights pairwise, and positional dependencies learned by a machine learning model. We demonstrate the use of this model-agnostic approach with classification and regression models trained on DNA, RNA and amino acid sequences.Monet eliöt koostuvat useista erilaisista solutyypeistä, vaikka kaikissa näiden eliöiden soluissa onkin sama DNA-koodi. Geenien ilmentymisen säätely mahdollistaa erilaiset solutyypit. Virheellisesti toimiva säätely voi johtaa sairauksiin, esimerkiksi syövän puhkeamiseen. Jos sairauden aiheuttaa viallinen proteiini, on syynä usein mutaatio tätä proteiinia koodaavassa geenissä, joka muuttaa proteiinia siten, ettei se enää pysty toimittamaan tehtäväänsä riittävän hyvin. Kuitenkin vain 1,5 % ihmisen genomista on proteiineja koodaavia geenejä. Suurin osa kaikista löydetyistä sairauksiin liitetyistä mutaatioista sijaitsee näiden ns. koodaavien alueiden ulkopuolella. Ei-koodaavien sairauksiin liitetyiden mutaatioiden vaikutusmekanismit ovat yleisesti paljon huonommin tunnettuja, kuin koodaavien alueiden mutaatioiden. Transkriptiotekijöiden sitoutuminen DNA:han säätelee transkriptiota, eli geeneissä olevan geneettisen informaation lukemista ja muuntamista RNA:ksi. Transkriptiotekijöiden sitoutumista DNA:han on mitattu kattavasti in vitro-olosuhteissa, ja monien transkriptiotekijöiden sitoutumiskohdat on mitattu genominlaajuisesti useissa eri solutyypeissä. Tästä huolimatta ymmärryksemme siitä miten transkriptioitekijöiden sitoutuminen genomin säätelyelementteihin, eli promoottoreihin ja vahvistajiin, johtaa geenien ilmentymiseen ei ole sellaisella tasolla, että voisimme luotettavasti ennustaa geenien ilmentymistä pelkästään DNA-sekvenssin perusteella. Tässä työssä kehitämme ja sovellamme laskennallisia työkaluja transkriptiotekijöiden sitoutumisesta johtuvan geenien ilmentymisen analysointiin ja mallintamiseen. Kehitämme myös uusia menetelmiä biologisella sekvenssidatalla opetettujen syväoppimismallien tulkitsemiseksi. Koneoppimismallin tekemien ennusteiden ymmärrettävyys on biologisissa sovelluksissa yleensä yhtä tärkeää, ellei jopa tärkeämpää kuin pelkkä raaka ennustetarkkuus. Tämä on synnyttänyt tarpeen uusille menetelmille, jotka auttavat tutkijoita louhimaan biologisesti merkityksellistä tietoa syväoppimismallien ennusteista. Kehitimme tässä työssä uuden laskennallisen työkalun, jolla voidaan määrittää transkriptiotekijöiden sitoutumiskohdat genominlaajuisesti käyttäen mittausdataa hiljattain kehitetyistä korkearesoluutioisista ChIP-exo ja ChIP-nexus kokeista. Näytämme, että kehittämämme menetelmä suoriutuu paremmin, tai vähintään yhtä hyvin kuin aiemmin julkaistut menetelmät tehden näitä vähemmän oletuksia signaalin muodosta. Esittelemme myös parannellun algoritmin transkriptiotekijöiden alleelispesifin sitoutumisen määrittämiseksi. Käytämme syväoppimismenetelmiä oppimaan mitkä ominaisuudet ennustavat ihmisen promoottori- ja voimistajaelementtien aktiivisuutta. Nämä syväoppimismallit on opetettu valtavien rinnakkaisten reportterigeenikokeiden datalla ihmisen genomisista säätelyelementeistä, sekä aktiivisista promoottoreista ja voimistajista, jotka ovat valikoituneet satunnaisesta joukosta synteettisiä DNA-sekvenssejä. Tämä ennennäkemättömän laaja joukko mittauksia ihmisen säätelyelementtien aktiivisuudesta - yli satakertainen määrä DNA sekvenssiä ihmisen genomiin verrattuna - mahdollisti transkription aloituskohtien sijainnin ennustamisen ihmisen genomissa tarkemmin kuin ihmisen genomilla opetetut mallit. Nämä mallit myös ennustivat oikein sairauksiin liitettyjen mutaatioiden vaikutukset ihmisen promoottoreilla. Tuloksemme näyttivät, että vuorovaikutukset ihmisen promoottorien ja klassisten paikallisten voimistajien välillä ovat epäspesifejä. MPRA-data, integroituna kattavien epigeneettisten mittausten kanssa mahdollisti voimistajaelementtien jaon kolmeen luokkaan: klassiset, suljetun kromatiinin, ja kromatiinista riippuvat voimistajat. Tutkimuksemme osoitti, että transkriptiotekijät voidaan jakaa neljään, osittain päällekkäiseen luokkaan niiden aktiivisuuksien perusteella: kromatiinia avaaviin, voimistaviin, promotoiviin ja transkription aloituskohdan määrittäviin transkriptiotekijöihin. Ihmisen genomin säätelyelementtejä kuvaavien syväoppimismallien tulkitseminen vaati sekä olemassa olevien menetelmien soveltamista, että uusien kehittämistä. Kehitimme tässä työssä kaksi uutta menetelmää syväoppimismallien oppimien muuttujien ja niiden välisten vuorovaikutusten visualisoimiseksi. Ensin esittelemme algoritmin, jonka avulla voidaan testata onko syväoppimismalli oppinut jonkin jo tunnetun transkriptiotekijän sitoutumishahmon. Toiseksi, visualisoimme positiokohtaisten k-meerijakaumien keskeisinformaatiota sekvensseissä, jotka on valittu syväoppimismallin ennusteiden perusteella. Tämä menetelmä paljastaa syväoppimismallin oppimat parivuorovaikutukset ja positiokohtaiset riippuvuudet. Näytämme, että kehittämämme menetelmä on mallin arkkitehtuurista riippumaton soveltamalla sitä sekä luokittelijoihin, että regressiomalleihin, jotka on opetettu joko DNA-, RNA-, tai aminohapposekvenssidatalla

    Development of Computational Techniques for Regulatory DNA Motif Identification Based on Big Biological Data

    Get PDF
    Accurate regulatory DNA motif (or motif) identification plays a fundamental role in the elucidation of transcriptional regulatory mechanisms in a cell and can strongly support the regulatory network construction for both prokaryotic and eukaryotic organisms. Next-generation sequencing techniques generate a huge amount of biological data for motif identification. Specifically, Chromatin Immunoprecipitation followed by high throughput DNA sequencing (ChIP-seq) enables researchers to identify motifs on a genome scale. Recently, technological improvements have allowed for DNA structural information to be obtained in a high-throughput manner, which can provide four DNA shape features. The DNA shape has been found as a complementary factor to genomic sequences in terms of transcription factor (TF)-DNA binding specificity prediction based on traditional machine learning models. Recent studies have demonstrated that deep learning (DL), especially the convolutional neural network (CNN), enables identification of motifs from DNA sequence directly. Although numerous algorithms and tools have been proposed and developed in this field, (1) the lack of intuitive and integrative web servers impedes the progress of making effective use of emerging algorithms and tools; (2) DNA shape has not been integrated with DL; and (3) existing DL models still suffer high false positive and false negative issues in motif identification. This thesis focuses on developing an integrated web server for motif identification based on DNA sequences either from users or built-in databases. This web server allows further motif-related analysis and Cytoscape-like network interpretation and visualization. We then proposed a DL framework for both sequence and shape motif identification from ChIP-seq data using a binomial distribution strategy. This framework can accept as input the different combinations of DNA sequence and DNA shape. Finally, we developed a gated convolutional neural network (GCNN) for capturing motif dependencies among long DNA sequences. Results show that our developed web server enables providing comprehensive motif analysis functionalities compared with existing web servers. The DL framework can identify motifs using an optimized threshold and disclose the strong predictive power of DNA shape in TF-DNA binding specificity. The identified sequence and shape motifs can contribute to TF-DNA binding mechanism interpretation. Additionally, GCNN can improve TF-DNA binding specificity prediction than CNN on most of the datasets
    corecore