247 research outputs found

    Uncovering contextual biases in human decision-making. A multivariate analysis approach for patterns of functional magnetic resonance imaging data and event-related potentials

    Get PDF
    Decision-making is a fundamental aspect of human cognition and behaviour. Every day, we make a multitude of decisions, ranging from rather simple perceptual choices to complex financial decisions. The underlying cognitive and neural mechanisms appear to directly deploy external information, gathered by our senses, as well as internal information, such as preferences and beliefs. Ideally, this results in well-informed decisions and successful goal-directed behaviour. In reality, however, we are often faced with decision situations in which we do not have clear preferences, or access to all information. In these situations, contextual factors appear to have a strong influence on decision-makers. This work highlights recent research supporting the hypothesis that contextual information can exert significant biases on a variety of decision processes outside decision-makers’ awareness. These studies further exemplify a content-based cognitive neuroscience approach to human decision-making research, building on multivariate analysis techniques for brain imaging data to directly predict the content of decision outcomes and other decision-related variables from brain activity

    Intelligent Computing for Big Data

    Get PDF
    Recent advances in artificial intelligence have the potential to further develop current big data research. The Special Issue on ‘Intelligent Computing for Big Data’ highlighted a number of recent studies related to the use of intelligent computing techniques in the processing of big data for text mining, autism diagnosis, behaviour recognition, and blockchain-based storage

    Visual analytics and artificial intelligence for marketing

    Get PDF
    In today’s online environments, such as social media platforms and e-commerce websites, consumers are overloaded with information and firms are competing for their attention. Most of the data on these platforms comes in the form of text, images, or other unstructured data sources. It is important to understand which information on company websites and social media platforms are enticing and/or likeable by consumers. The impact of online visual content, in particular, remains largely unknown. Finding the drivers behind likes and clicks can help (1) understand how consumers interact with the information that is presented to them and (2) leverage this knowledge to improve marketing content. The main goal of this dissertation is to learn more about why consumers like and click on visual content online. To reach this goal visual analytics are used for automatic extraction of relevant information from visual content. This information can then be related, at scale, to consumer and their decisions

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201

    Predictive cognition in dementia: the case of music

    Get PDF
    The clinical complexity and pathological diversity of neurodegenerative diseases impose immense challenges for diagnosis and the design of rational interventions. To address these challenges, there is a need to identify new paradigms and biomarkers that capture shared pathophysiological processes and can be applied across a range of diseases. One core paradigm of brain function is predictive coding: the processes by which the brain establishes predictions and uses them to minimise prediction errors represented as the difference between predictions and actual sensory inputs. The processes involved in processing unexpected events and responding appropriately are vulnerable in common dementias but difficult to characterise. In my PhD work, I have exploited key properties of music – its universality, ecological relevance and structural regularity – to model and assess predictive cognition in patients representing major syndromes of frontotemporal dementia – non-fluent variant PPA (nfvPPA), semantic-variant PPA (svPPA) and behavioural-variant FTD (bvFTD) - and Alzheimer’s disease relative to healthy older individuals. In my first experiment, I presented patients with well-known melodies containing no deviants or one of three types of deviant - acoustic (white-noise burst), syntactic (key-violating pitch change) or semantic (key-preserving pitch change). I assessed accuracy detecting melodic deviants and simultaneously-recorded pupillary responses to these deviants. I used voxel-based morphometry to define neuroanatomical substrates for the behavioural and autonomic processing of these different types of deviants, and identified a posterior temporo-parietal network for detection of basic acoustic deviants and a more anterior fronto-temporo-striatal network for detection of syntactic pitch deviants. In my second chapter, I investigated the ability of patients to track the statistical structure of the same musical stimuli, using a computational model of the information dynamics of music to calculate the information-content of deviants (unexpectedness) and entropy of melodies (uncertainty). I related these information-theoretic metrics to performance for detection of deviants and to ‘evoked’ and ‘integrative’ pupil reactivity to deviants and melodies respectively and found neuroanatomical correlates in bilateral dorsal and ventral striatum, hippocampus, superior temporal gyri, right temporal pole and left inferior frontal gyrus. Together, chapters 3 and 4 revealed new hypotheses about the way FTD and AD pathologies disrupt the integration of predictive errors with predictions: a retained ability of AD patients to detect deviants at all levels of the hierarchy with a preserved autonomic sensitivity to information-theoretic properties of musical stimuli; a generalized impairment of surprise detection and statistical tracking of musical information at both a cognitive and autonomic levels for svPPA patients underlying a diminished precision of predictions; the exact mirror profile of svPPA patients in nfvPPA patients with an abnormally high rate of false-alarms with up-regulated pupillary reactivity to deviants, interpreted as over-precise or inflexible predictions accompanied with normal cognitive and autonomic probabilistic tracking of information; an impaired behavioural and autonomic reactivity to unexpected events with a retained reactivity to environmental uncertainty in bvFTD patients. Chapters 5 and 6 assessed the status of reward prediction error processing and updating via actions in bvFTD. I created pleasant and aversive musical stimuli by manipulating chord progressions and used a classic reinforcement-learning paradigm which asked participants to choose the visual cue with the highest probability of obtaining a musical ‘reward’. bvFTD patients showed reduced sensitivity to the consequence of an action and lower learning rate in response to aversive stimuli compared to reward. These results correlated with neuroanatomical substrates in ventral and dorsal attention networks, dorsal striatum, parahippocampal gyrus and temporo-parietal junction. Deficits were governed by the level of environmental uncertainty with normal learning dynamics in a structured and binarized environment but exacerbated deficits in noisier environments. Impaired choice accuracy in noisy environments correlated with measures of ritualistic and compulsive behavioural changes and abnormally reduced learning dynamics correlated with behavioural changes related to empathy and theory-of-mind. Together, these experiments represent the most comprehensive attempt to date to define the way neurodegenerative pathologies disrupts the perceptual, behavioural and physiological encoding of unexpected events in predictive coding terms
    • …
    corecore