4,341 research outputs found

    Predicting plateau pressure in intensive medicine for ventilated patients

    Get PDF
    Barotrauma is identified as one of the leading diseases in Ventilated Patients. This type of problem is most common in the Intensive Care Units. In order to prevent this problem the use of Data Mining (DM) can be useful for predicting their occurrence. The main goal is to predict the occurence of Barotrauma in order to support the health professionals taking necessary precautions. In a first step intensivists identified the Plateau Pressure values as a possible cause of Barotrauma. Through this study DM models (classification) where induced for predicting the Plateau Pressure class (>=30 cm2O) in a real environment and using real data. The present study explored and assessed the possibility of predicting the Plateau pressure class with high accuracies. The dataset used only contained data provided by the ventilators. The best models are able to predict the Plateau Pressure with an accuracy ranging from 95.52% to 98.71%.This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013. The authors would like to thank FCT (Foundation of Science and Technology, Portugal) for the financial support through the contract PTDC/EEI-SII/1302/2012 (INTCare II)

    Effect of external PEEP in patients under controlled mechanical ventilation with an auto-PEEP of 5 cmH2O or higher.

    Get PDF
    In some patients with auto-positive end-expiratory pressure (auto-PEEP), application of PEEP lower than auto-PEEP maintains a constant total PEEP, therefore reducing the inspiratory threshold load without detrimental cardiovascular or respiratory effects. We refer to these patients as complete PEEP-absorbers. Conversely, adverse effects of PEEP application could occur in patients with auto-PEEP when the total PEEP rises as a consequence. From a pathophysiological perspective, all subjects with flow limitation are expected to be complete PEEP-absorbers, whereas PEEP should increase total PEEP in all other patients. This study aimed to empirically assess the extent to which flow limitation alone explains a complete PEEP-absorber behavior (i.e., absence of further hyperinflation with PEEP), and to identify other factors associated with it.One hundred patients with auto-PEEP of at least 5 cmH2O at zero end-expiratory pressure (ZEEP) during controlled mechanical ventilation were enrolled. Total PEEP (i.e., end-expiratory plateau pressure) was measured both at ZEEP and after applied PEEP equal to 80 % of auto-PEEP measured at ZEEP. All measurements were repeated three times, and the average value was used for analysis.Forty-seven percent of the patients suffered from chronic pulmonary disease and 52 % from acute pulmonary disease; 61 % showed flow limitation at ZEEP, assessed by manual compression of the abdomen. The mean total PEEP was 7 ± 2 cmH2O at ZEEP and 9 ± 2 cmH2O after the application of PEEP (p < 0.001). Thirty-three percent of the patients were complete PEEP-absorbers. Multiple logistic regression was used to predict the behavior of complete PEEP-absorber. The best model included a respiratory rate lower than 20 breaths/min and the presence of flow limitation. The predictive ability of the model was excellent, with an overoptimism-corrected area under the receiver operating characteristics curve of 0.89 (95 % CI 0.80-0.97).Expiratory flow limitation was associated with both high and complete PEEP-absorber behavior, but setting a relatively high respiratory rate on the ventilator can prevent from observing complete PEEP-absorption. Therefore, the effect of PEEP application in patients with auto-PEEP can be accurately predicted at the bedside by measuring the respiratory rate and observing the flow-volume loop during manual compression of the abdomen

    Management of Mechanical Ventilation in Decompensated Heart Failure.

    Get PDF
    Mechanical ventilation (MV) is a life-saving intervention for respiratory failure, including decompensated congestive heart failure. MV can reduce ventricular preload and afterload, decrease extra-vascular lung water, and decrease the work of breathing in heart failure. The advantages of positive pressure ventilation must be balanced with potential harm from MV: volutrauma, hyperoxia-induced injury, and difficulty assessing readiness for liberation. In this review, we will focus on cardiac, pulmonary, and broader effects of MV on patients with decompensated HF, focusing on practical considerations for management and supporting evidence

    Critical events in mechanically ventilated patients

    Get PDF
    Mechanical Ventilation is an artificial way to help a Patient to breathe. This procedure is used to support patients with respiratory diseases however in many cases it can provoke lung damages, Acute Respiratory Diseases or organ failure. With the goal to early detect possible patient breath problems a set of limit values was defined to some variables monitored by the ventilator (Average Ventilation Pressure, Compliance Dynamic, Flow, Peak, Plateau and Support Pressure, Positive end-expiratory pressure, Respiratory Rate) in order to create critical events. A critical event is verified when a patient has a value higher or lower than the normal range defined for a certain period of time. The values were defined after elaborate a literature review and meeting with physicians specialized in the area. This work uses data streaming and intelligent agents to process the values collected in real-time and classify them as critical or not. Real data provided by an Intensive Care Unit were used to design and test the solution. In this study it was possible to understand the importance of introduce critical events for Mechanically Ventilated Patients. In some cases a value is considered critical (can trigger an alarm) however it is a single event (instantaneous) and it has not a clinical significance for the patient. The introduction of critical events which crosses a range of values and a pre-defined duration contributes to improve the decision-making process by decreasing the number of false positives and having a better comprehension of the patient condition.- Fundação para a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013 . The authors would like to thank FCT (Foundation of Science and Technology, Portugal) for the financial support through the contract PTDC/EEI-SII/1302/2012 (INTCare II

    Clustering barotrauma patients in ICU–A data mining based approach using ventilator variables

    Get PDF
    Predicting barotrauma occurrence in intensive care patients is a difficult task. Data Mining modelling can contribute significantly to the identification of patients who will suffer barotrauma. This can be achieved by grouping patient data, considering a set of variables collected from ventilators directly related with barotrauma, and identifying similarities among them. For clustering have been considered k-means and k-medoids algortihms (Partitioning Around Medoids). The best model induced presented a Davies-Bouldin Index of 0.64. This model identifies the variables that have more similarity among the variables monitored by the ventilators and the occurrence of barotrauma

    Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning

    Full text link
    Background: For mechanically ventilated critically ill COVID-19 patients, prone positioning has quickly become an important treatment strategy, however, prone positioning is labor intensive and comes with potential adverse effects. Therefore, identifying which critically ill intubated COVID-19 patients will benefit may help allocate labor resources. Methods: From the multi-center Dutch Data Warehouse of COVID-19 ICU patients from 25 hospitals, we selected all 3619 episodes of prone positioning in 1142 invasively mechanically ventilated patients. We excluded episodes longer than 24 h. Berlin ARDS criteria were not formally documented. We used supervised machine learning algorithms Logistic Regression, Random Forest, Naive Bayes, K-Nearest Neighbors, Support Vector Machine and Extreme Gradient Boosting on readily available and clinically relevant features to predict success of prone positioning after 4 h (window of 1 to 7 h) based on various possible outcomes. These outcomes were defined as improvements of at least 10% in PaO2/FiO2 ratio, ventilatory ratio, respiratory system compliance, or mechanical power. Separate models were created for each of these outcomes. Re-supination within 4 h after pronation was labeled as failure. We also developed models using a 20 mmHg improvement cut-off for PaO2/FiO2 ratio and using a combined outcome parameter. For all models, we evaluated feature importance expressed as contribution to predictive performance based on their relative ranking. Results: The median duration of prone episodes was 17 h (11-20, median and IQR, N = 2632). Despite extensive modeling using a plethora of machine learning techniques and a large number of potentially clinically relevant features, discrimination between responders and non-responders remained poor with an area under the receiver operator characteristic curve of 0.62 for PaO2/FiO2 ratio using Logistic Regression, Random Forest and XGBoost. Feature importance was inconsistent between models for different outcomes. Notably, not even being a previous responder to prone positioning, or PEEP-levels before prone positioning, provided any meaningful contribution to predicting a successful next proning episode. Conclusions: In mechanically ventilated COVID-19 patients, predicting the success of prone positioning using clinically relevant and readily available parameters from electronic health records is currently not feasible. Given the current evidence base, a liberal approach to proning in all patients with severe COVID-19 ARDS is therefore justified and in particular regardless of previous results of proning. Keywords: Acute respiratory distress syndrome; COVID-19; Mechanical ventilation

    Intelligent decision support to predict patient barotrauma risk in intensive care units

    Get PDF
    The occurrence of Barotrauma is identified as a major concern for health professionals, since it can be fatal for patients. In order to support the decision process and to predict the risk of occurring barotrauma Data Mining models were induced. Based on this principle, the present study addresses the Data Mining process aiming to provide hourly probability of a patient has Barotrauma. The process of discovering implicit knowledge in data collected from Intensive Care Units patientswas achieved through the standard process Cross Industry Standard Process for Data Mining. With the goal of making predictions according to the classification approach they several DM techniques were selected: Decision Trees, Naive Bayes and Support Vector Machine. The study was focused on identifying the validity and viability to predict a composite variable. To predict the Barotrauma two classes were created: “risk” and “no risk”. Such target come from combining two variables: Plateau Pressure and PCO2. The best models presented a sensitivity between 96.19% and 100%. In terms of accuracy the values varied between 87.5% and 100%. This study and the achieved results demonstrated the feasibility of predicting the risk of a patient having Barotrauma by presenting the probability associated

    Echocardiographic Assessment of Preload Responsiveness in Critically Ill Patients

    Get PDF
    Fluid challenges are considered the cornerstone of resuscitation in critically ill patients. However, clinical studies have demonstrated that only about 50% of hemodynamically unstable patients are volume responsive. Furthermore, increasing evidence suggests that excess fluid resuscitation is associated with increased mortality. It therefore becomes vital to assess a patient's fluid responsiveness prior to embarking on fluid loading. Static pressure (CVP, PAOP) and echocardiographic (IVC diameter, LVEDA) parameters fails to predict volume responsiveness. However, a number of dynamic echocardiographic parameters which are based on changes in vena-caval dimensions or cardiac function induce by positive pressure ventilation or passive leg raising appear to be highly predictive of volume responsiveness

    Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016.

    Get PDF
    OBJECTIVE: To provide an update to "Surviving Sepsis Campaign Guidelines for Management of Sepsis and Septic Shock: 2012." DESIGN: A consensus committee of 55 international experts representing 25 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict-of-interest (COI) policy was developed at the onset of the process and enforced throughout. A stand-alone meeting was held for all panel members in December 2015. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The panel consisted of five sections: hemodynamics, infection, adjunctive therapies, metabolic, and ventilation. Population, intervention, comparison, and outcomes (PICO) questions were reviewed and updated as needed, and evidence profiles were generated. Each subgroup generated a list of questions, searched for best available evidence, and then followed the principles of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to assess the quality of evidence from high to very low, and to formulate recommendations as strong or weak, or best practice statement when applicable. RESULTS: The Surviving Sepsis Guideline panel provided 93 statements on early management and resuscitation of patients with sepsis or septic shock. Overall, 32 were strong recommendations, 39 were weak recommendations, and 18 were best-practice statements. No recommendation was provided for four questions. CONCLUSIONS: Substantial agreement exists among a large cohort of international experts regarding many strong recommendations for the best care of patients with sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality
    corecore