19,147 research outputs found

    Optimal control of transitions between nonequilibrium steady states

    Get PDF
    Biological systems fundamentally exist out of equilibrium in order to preserve organized structures and processes. Many changing cellular conditions can be represented as transitions between nonequilibrium steady states, and organisms have an interest in optimizing such transitions. Using the Hatano-Sasa Y-value, we extend a recently developed geometrical framework for determining optimal protocols so that it can be applied to systems driven from nonequilibrium steady states. We calculate and numerically verify optimal protocols for a colloidal particle dragged through solution by a translating optical trap with two controllable parameters. We offer experimental predictions, specifically that optimal protocols are significantly less costly than naive ones. Optimal protocols similar to these may ultimately point to design principles for biological energy transduction systems and guide the design of artificial molecular machines.Comment: Accepted for publication at PLoS ON

    A bibliography /with abstracts/ on gas-lubricated bearings Interim report

    Get PDF
    Gas lubricated bearings - annotated bibliograph

    Integer Echo State Networks: Hyperdimensional Reservoir Computing

    Full text link
    We propose an approximation of Echo State Networks (ESN) that can be efficiently implemented on digital hardware based on the mathematics of hyperdimensional computing. The reservoir of the proposed Integer Echo State Network (intESN) is a vector containing only n-bits integers (where n<8 is normally sufficient for a satisfactory performance). The recurrent matrix multiplication is replaced with an efficient cyclic shift operation. The intESN architecture is verified with typical tasks in reservoir computing: memorizing of a sequence of inputs; classifying time-series; learning dynamic processes. Such an architecture results in dramatic improvements in memory footprint and computational efficiency, with minimal performance loss.Comment: 10 pages, 10 figures, 1 tabl

    Transient Information Flow in a Network of Excitatory and Inhibitory Model Neurons: Role of Noise and Signal Autocorrelation

    Get PDF
    We investigate the performance of sparsely-connected networks of integrate-and-fire neurons for ultra-short term information processing. We exploit the fact that the population activity of networks with balanced excitation and inhibition can switch from an oscillatory firing regime to a state of asynchronous irregular firing or quiescence depending on the rate of external background spikes. We find that in terms of information buffering the network performs best for a moderate, non-zero, amount of noise. Analogous to the phenomenon of stochastic resonance the performance decreases for higher and lower noise levels. The optimal amount of noise corresponds to the transition zone between a quiescent state and a regime of stochastic dynamics. This provides a potential explanation on the role of non-oscillatory population activity in a simplified model of cortical micro-circuits.Comment: 27 pages, 7 figures, to appear in J. Physiology (Paris) Vol. 9
    • …
    corecore