149 research outputs found

    Predicting Oral Disintegrating Tablet Formulations by Neural Network Techniques

    Full text link
    Oral Disintegrating Tablets (ODTs) is a novel dosage form that can be dissolved on the tongue within 3min or less especially for geriatric and pediatric patients. Current ODT formulation studies usually rely on the personal experience of pharmaceutical experts and trial-and-error in the laboratory, which is inefficient and time-consuming. The aim of current research was to establish the prediction model of ODT formulations with direct compression process by Artificial Neural Network (ANN) and Deep Neural Network (DNN) techniques. 145 formulation data were extracted from Web of Science. All data sets were divided into three parts: training set (105 data), validation set (20) and testing set (20). ANN and DNN were compared for the prediction of the disintegrating time. The accuracy of the ANN model has reached 85.60%, 80.00% and 75.00% on the training set, validation set and testing set respectively, whereas that of the DNN model was 85.60%, 85.00% and 80.00%, respectively. Compared with the ANN, DNN showed the better prediction for ODT formulations. It is the first time that deep neural network with the improved dataset selection algorithm is applied to formulation prediction on small data. The proposed predictive approach could evaluate the critical parameters about quality control of formulation, and guide research and process development. The implementation of this prediction model could effectively reduce drug product development timeline and material usage, and proactively facilitate the development of a robust drug product.Comment: This is a post-peer-review, pre-copyedit version of an article published in Asian Journal of Pharmaceutical Sciences. The final authenticated version is available online at: https://doi.org/10.1016/j.ajps.2018.01.00

    Deep learning for in vitro prediction of pharmaceutical formulations

    Full text link
    Current pharmaceutical formulation development still strongly relies on the traditional trial-and-error approach by individual experiences of pharmaceutical scientists, which is laborious, time-consuming and costly. Recently, deep learning has been widely applied in many challenging domains because of its important capability of automatic feature extraction. The aim of this research is to use deep learning to predict pharmaceutical formulations. In this paper, two different types of dosage forms were chosen as model systems. Evaluation criteria suitable for pharmaceutics were applied to assessing the performance of the models. Moreover, an automatic dataset selection algorithm was developed for selecting the representative data as validation and test datasets. Six machine learning methods were compared with deep learning. The result shows the accuracies of both two deep neural networks were above 80% and higher than other machine learning models, which showed good prediction in pharmaceutical formulations. In summary, deep learning with the automatic data splitting algorithm and the evaluation criteria suitable for pharmaceutical formulation data was firstly developed for the prediction of pharmaceutical formulations. The cross-disciplinary integration of pharmaceutics and artificial intelligence may shift the paradigm of pharmaceutical researches from experience-dependent studies to data-driven methodologies

    Quality-by-design in pharmaceutical development: From current perspectives to practical applications

    Get PDF
    Current pharmaceutical research directions tend to follow a systematic approach in the field of applied research and development. The concept of quality-by-design (QbD) has been the focus of the current progress of pharmaceutical sciences. It is based on, but not limited, to risk assessment, design of experiments and other computational methods and process analytical technology. These tools offer a well-organized methodology, both to identify and analyse the hazards that should be handled as critical, and are therefore applicable in the control strategy. Once implemented, the QbD approach will augment the comprehension of experts concerning the developed analytical technique or manufacturing process. The main activities are oriented towards the identification of the quality target product profiles, along with the critical quality attributes, the risk management of these and their analysis through in silico aided methods. This review aims to offer an overview of the current standpoints and general applications of QbD methods in pharmaceutical development

    Disrupting 3D printing of medicines with machine learning.

    Get PDF
    3D printing (3DP) is a progressive technology capable of transforming pharmaceutical development. However, despite its promising advantages, its transition into clinical settings remains slow. To make the vital leap to mainstream clinical practice and improve patient care, 3DP must harness modern technologies. Machine learning (ML), an influential branch of artificial intelligence, may be a key partner for 3DP. Together, 3DP and ML can utilise intelligence based on human learning to accelerate drug product development, ensure stringent quality control (QC), and inspire innovative dosage-form design. With ML's capabilities, streamlined 3DP drug delivery could mark the next era of personalised medicine. This review details how ML can be applied to elevate the 3DP of pharmaceuticals and importantly, how it can expedite 3DP's integration into mainstream healthcare

    Pregled primene algoritama mašinskog učenja u farmaceutskoj tehnologiji

    Get PDF
    Machine learning algorithms, and artificial intelligence in general, have a wide range of applications in the field of pharmaceutical technology. Starting from the formulation development, through a great potential for integration within the Quality by design framework, these data science tools provide a better understanding of the pharmaceutical formulations and respective processing. Machine learning algorithms can be especially helpful with the analysis of the large volume of data generated by the Process analytical technologies. This paper provides a brief explanation of the artificial neural networks, as one of the most frequently used machine learning algorithms. The process of the network training and testing is described and accompanied with illustrative examples of machine learning tools applied in the context of pharmaceutical formulation development and related technologies, as well as an overview of the future trends. Recently published studies on more sophisticated methods, such as deep neural networks and light gradient boosting machine algorithm, have been described. The interested reader is also referred to several official documents (guidelines) that pave the way for a more structured representation of the machine learning models in their prospective submissions to the regulatory bodies.Algoritmi mašinskog učenja, kao i veštačka inteligencija u širem smislu, su veoma značajni i primenjuju se u razne svrhe u okviru farmaceutske tehnologije. Počevši od razvoja formulacija, preko izuzetnog potencijala za integraciju u koncept dizajna kvaliteta (engl. Quality by design), algoritmi mašinskog učenja omogućavaju bolje razumevanje uticaja kako formulacionih faktora tako i odgovarajućih procesnih parametara. Algoritmi mašinskog učenja mogu biti od naročitog značaja i za analizu velikog obima podataka koji se generišu korišćenjem procesnih analitičkih tehnologija. U ovom radu su ukratko predstavljene veštačke neuronske mreže, kao jedan od najčešće korišćenih algoritama mašinskog učenja. Prikazani su procesi treninga i testiranja mreža, kao i ilustrativni primeri algoritama primenjenih za različite potrebe razvoja i/ili optimizacije farmaceutskih formulacija i postupaka njihove izrade. Takođe, dat je i pregled budućih trendova u ovoj oblasti, kao i novijih studija o sofisticiranim metodama, poput dubokih neuronskih mreža, i light gradient boosting algoritma. Zainteresovani čitaoci se takođe upućuju na nekoliko zvaničnih dokumenata (vodiča), po uzoru na koje mogu da se očekuju i preporuke za strukturiranu prezentaciju modela mašinskog učenja koji će se podnositi regulatornim telima u okviru dokumentacije koja se priprema za potrebe registracije novih lekova

    Formulation of Fast-Dissolving Tablets of Promethazine Theoclate

    Get PDF
    Purpose: To optimize and formulate promethazine theoclate fast-dissolving tablets that offer a suitable approach to the treatment of nausea and vomiting. Method: The solubility of promethazine theoclate was increased by formulating it as a fast-dissolving tablet containing β-cyclodextrin, crospovidone, and camphor, using direct compression method. A 33 full factorial design was used to investigate the combined influence of three independent variables - amounts of camphor, crospovidone and β-cyclodextrin - on disintegration time, friability and drug release after 5 min. Result: The optimization study, involving multiple regression analysis, revealed that optimum amounts of camphor, crospovidone and β-cyclodextrin gave a rapidly disintegrating/dissolving tablet. A checkpoint batch was also prepared to verify the validity of the evolved mathematical model. The optimized tablet should be prepared with an optimum amount of β-cyclodextrin (3.0 mg), camphor (3.29 mg) and crospovidone (2.61 mg) which disintegrated in 30 s, with a friability of 0.60 % and drug release of 89 % in 5 min. Conclusion: The optimized approach aided both the formulation of fast-dissolving theoclate tablets and the understanding of the effect of formulation processing variables on the development of the formulation.Keywords: Fast-dissolving tablet, 33 Factorial design, Promethazine theoclate, Optmization studies

    Simultaneous investigation of the liquid transport and swelling performance during tablet disintegration.

    Get PDF
    Fast disintegrating tablets have commonly been used for fast oral drug delivery to patients with swallowing difficulties. The different characteristics of the pore structure of such formulations influence the liquid transport through the tablet and hence affect the disintegration time and the release of the drug in the body. In this work, terahertz time-domain spectroscopy and terahertz pulsed imaging were used as promising analytical techniques to quantitatively analyse the impact of the structural properties on the liquid uptake and swelling rates upon contact with the dissolution medium. Both the impact of porosity and formulation were investigated for theophylline and paracetamol based tablets. The drug substances were either formulated with functionalised calcium carbonate (FCC) with porosities of 45% and 60% or with microcrystalline cellulose (MCC) with porosities of 10% and 25%. The terahertz results reveal that the rate of liquid uptake is clearly influenced by the porosity of the tablets with a faster liquid transport observed for tablets with higher porosity, indicating that the samples exhibit structural similarity in respect to pore connectivity and pore size distribution characteristics in respect to permeability. The swelling of the FCC based tablets is fully controlled by the amount of disintegrant, whereas the liquid uptake is driven by the FCC material and the interparticle pores created during compaction. The MCC based formulations are more complex as the MCC significantly contributes to the overall tablet swelling. An increase in swelling with increasing porosity is observed in these tablets, which indicates that such formulations are performance-limited by their ability to take up liquid. Investigating the effect of the microstructure characteristics on the liquid transport and swelling kinetics is of great importance for reaching the next level of understanding of the drug delivery, and, depending on the surface nature of the pore carrier function, in turn controlling the performance of the drug mainly in respect to dissolution in the body

    Harnessing Artificial Intelligence for the Next Generation of 3D Printed Medicines

    Get PDF
    Artificial intelligence (AI) is redefining how we exist in the world. In almost every sector of society, AI is performing tasks with super-human speed and intellect; from the prediction of stock market trends to driverless vehicles, diagnosis of disease, and robotic surgery. Despite this growing success, the pharmaceutical field is yet to truly harness AI. Development and manufacture of medicines remains largely in a ‘one size fits all’ paradigm, in which mass-produced, identical formulations are expected to meet individual patient needs. Recently, 3D printing (3DP) has illuminated a path for on-demand production of fully customisable medicines. Due to its flexibility, pharmaceutical 3DP presents innumerable options during formulation development that generally require expert navigation. Leveraging AI within pharmaceutical 3DP removes the need for human expertise, as optimal process parameters can be accurately predicted by machine learning. AI can also be incorporated into a pharmaceutical 3DP ‘Internet of Things’, moving the personalised production of medicines into an intelligent, streamlined, and autonomous pipeline. Supportive infrastructure, such as The Cloud and blockchain, will also play a vital role. Crucially, these technologies will expedite the use of pharmaceutical 3DP in clinical settings and drive the global movement towards personalised medicine and Industry 4.0
    corecore